The pitfalls of using Gaussian Process Regression for normative modeling.

Normative modeling, a group of methods used to quantify an individual's deviation from some expected trajectory relative to observed variability around that trajectory, has been used to characterize subject heterogeneity. Gaussian Processes Regression includes an estimate of variable uncertaint...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Bohan Xu, Rayus Kuplicki, Sandip Sen, Martin P Paulus
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/13a9461825414da983c7677212fac93a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:13a9461825414da983c7677212fac93a
record_format dspace
spelling oai:doaj.org-article:13a9461825414da983c7677212fac93a2021-12-02T20:08:14ZThe pitfalls of using Gaussian Process Regression for normative modeling.1932-620310.1371/journal.pone.0252108https://doaj.org/article/13a9461825414da983c7677212fac93a2021-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0252108https://doaj.org/toc/1932-6203Normative modeling, a group of methods used to quantify an individual's deviation from some expected trajectory relative to observed variability around that trajectory, has been used to characterize subject heterogeneity. Gaussian Processes Regression includes an estimate of variable uncertainty across the input domain, which at face value makes it an attractive method to normalize the cohort heterogeneity where the deviation between predicted value and true observation is divided by the derived uncertainty directly from Gaussian Processes Regression. However, we show that the uncertainty directly from Gaussian Processes Regression is irrelevant to the cohort heterogeneity in general.Bohan XuRayus KuplickiSandip SenMartin P PaulusPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 9, p e0252108 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Bohan Xu
Rayus Kuplicki
Sandip Sen
Martin P Paulus
The pitfalls of using Gaussian Process Regression for normative modeling.
description Normative modeling, a group of methods used to quantify an individual's deviation from some expected trajectory relative to observed variability around that trajectory, has been used to characterize subject heterogeneity. Gaussian Processes Regression includes an estimate of variable uncertainty across the input domain, which at face value makes it an attractive method to normalize the cohort heterogeneity where the deviation between predicted value and true observation is divided by the derived uncertainty directly from Gaussian Processes Regression. However, we show that the uncertainty directly from Gaussian Processes Regression is irrelevant to the cohort heterogeneity in general.
format article
author Bohan Xu
Rayus Kuplicki
Sandip Sen
Martin P Paulus
author_facet Bohan Xu
Rayus Kuplicki
Sandip Sen
Martin P Paulus
author_sort Bohan Xu
title The pitfalls of using Gaussian Process Regression for normative modeling.
title_short The pitfalls of using Gaussian Process Regression for normative modeling.
title_full The pitfalls of using Gaussian Process Regression for normative modeling.
title_fullStr The pitfalls of using Gaussian Process Regression for normative modeling.
title_full_unstemmed The pitfalls of using Gaussian Process Regression for normative modeling.
title_sort pitfalls of using gaussian process regression for normative modeling.
publisher Public Library of Science (PLoS)
publishDate 2021
url https://doaj.org/article/13a9461825414da983c7677212fac93a
work_keys_str_mv AT bohanxu thepitfallsofusinggaussianprocessregressionfornormativemodeling
AT rayuskuplicki thepitfallsofusinggaussianprocessregressionfornormativemodeling
AT sandipsen thepitfallsofusinggaussianprocessregressionfornormativemodeling
AT martinppaulus thepitfallsofusinggaussianprocessregressionfornormativemodeling
AT bohanxu pitfallsofusinggaussianprocessregressionfornormativemodeling
AT rayuskuplicki pitfallsofusinggaussianprocessregressionfornormativemodeling
AT sandipsen pitfallsofusinggaussianprocessregressionfornormativemodeling
AT martinppaulus pitfallsofusinggaussianprocessregressionfornormativemodeling
_version_ 1718375165118644224