The pitfalls of using Gaussian Process Regression for normative modeling.
Normative modeling, a group of methods used to quantify an individual's deviation from some expected trajectory relative to observed variability around that trajectory, has been used to characterize subject heterogeneity. Gaussian Processes Regression includes an estimate of variable uncertaint...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/13a9461825414da983c7677212fac93a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:13a9461825414da983c7677212fac93a |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:13a9461825414da983c7677212fac93a2021-12-02T20:08:14ZThe pitfalls of using Gaussian Process Regression for normative modeling.1932-620310.1371/journal.pone.0252108https://doaj.org/article/13a9461825414da983c7677212fac93a2021-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0252108https://doaj.org/toc/1932-6203Normative modeling, a group of methods used to quantify an individual's deviation from some expected trajectory relative to observed variability around that trajectory, has been used to characterize subject heterogeneity. Gaussian Processes Regression includes an estimate of variable uncertainty across the input domain, which at face value makes it an attractive method to normalize the cohort heterogeneity where the deviation between predicted value and true observation is divided by the derived uncertainty directly from Gaussian Processes Regression. However, we show that the uncertainty directly from Gaussian Processes Regression is irrelevant to the cohort heterogeneity in general.Bohan XuRayus KuplickiSandip SenMartin P PaulusPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 9, p e0252108 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Bohan Xu Rayus Kuplicki Sandip Sen Martin P Paulus The pitfalls of using Gaussian Process Regression for normative modeling. |
description |
Normative modeling, a group of methods used to quantify an individual's deviation from some expected trajectory relative to observed variability around that trajectory, has been used to characterize subject heterogeneity. Gaussian Processes Regression includes an estimate of variable uncertainty across the input domain, which at face value makes it an attractive method to normalize the cohort heterogeneity where the deviation between predicted value and true observation is divided by the derived uncertainty directly from Gaussian Processes Regression. However, we show that the uncertainty directly from Gaussian Processes Regression is irrelevant to the cohort heterogeneity in general. |
format |
article |
author |
Bohan Xu Rayus Kuplicki Sandip Sen Martin P Paulus |
author_facet |
Bohan Xu Rayus Kuplicki Sandip Sen Martin P Paulus |
author_sort |
Bohan Xu |
title |
The pitfalls of using Gaussian Process Regression for normative modeling. |
title_short |
The pitfalls of using Gaussian Process Regression for normative modeling. |
title_full |
The pitfalls of using Gaussian Process Regression for normative modeling. |
title_fullStr |
The pitfalls of using Gaussian Process Regression for normative modeling. |
title_full_unstemmed |
The pitfalls of using Gaussian Process Regression for normative modeling. |
title_sort |
pitfalls of using gaussian process regression for normative modeling. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2021 |
url |
https://doaj.org/article/13a9461825414da983c7677212fac93a |
work_keys_str_mv |
AT bohanxu thepitfallsofusinggaussianprocessregressionfornormativemodeling AT rayuskuplicki thepitfallsofusinggaussianprocessregressionfornormativemodeling AT sandipsen thepitfallsofusinggaussianprocessregressionfornormativemodeling AT martinppaulus thepitfallsofusinggaussianprocessregressionfornormativemodeling AT bohanxu pitfallsofusinggaussianprocessregressionfornormativemodeling AT rayuskuplicki pitfallsofusinggaussianprocessregressionfornormativemodeling AT sandipsen pitfallsofusinggaussianprocessregressionfornormativemodeling AT martinppaulus pitfallsofusinggaussianprocessregressionfornormativemodeling |
_version_ |
1718375165118644224 |