The pitfalls of using Gaussian Process Regression for normative modeling.
Normative modeling, a group of methods used to quantify an individual's deviation from some expected trajectory relative to observed variability around that trajectory, has been used to characterize subject heterogeneity. Gaussian Processes Regression includes an estimate of variable uncertaint...
Guardado en:
Autores principales: | Bohan Xu, Rayus Kuplicki, Sandip Sen, Martin P Paulus |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/13a9461825414da983c7677212fac93a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Use of Gaussian process regression for radiation mapping of a nuclear reactor with a mobile robot
por: Andrew West, et al.
Publicado: (2021) -
An additive Gaussian process regression model for interpretable non-parametric analysis of longitudinal data
por: Lu Cheng, et al.
Publicado: (2019) -
Towards estimation of CO2 adsorption on highly porous MOF-based adsorbents using gaussian process regression approach
por: Majedeh Gheytanzadeh, et al.
Publicado: (2021) -
Warped Bayesian linear regression for normative modelling of big data
por: Charlotte J. Fraza, et al.
Publicado: (2021) -
High precision implicit function learning for forecasting supercapacitor state of health based on Gaussian process regression
por: Jiahao Ren, et al.
Publicado: (2021)