Klasifikasi Sinyal EEG Dengan Power Spectra Density Berbasis Metode Welch Dan MLP Backpropagation

Electroencephalogram (EEG) signal is a signal that could become an information for study about disorders of brain function  such as Epilepsi. EEG that detected in epileptic seizures produce patterns that allow doctors to distinguish it from normal conditions. However, a visual analysis can not be do...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Nursuci Putri Husain, Nurseno Bayu Aji
Formato: article
Lenguaje:EN
ID
Publicado: P3M Politeknik Negeri Banjarmasin 2019
Materias:
Acceso en línea:https://doaj.org/article/13ac41ae12824cbb98863b1134b668d4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:13ac41ae12824cbb98863b1134b668d4
record_format dspace
spelling oai:doaj.org-article:13ac41ae12824cbb98863b1134b668d42021-12-02T01:08:41ZKlasifikasi Sinyal EEG Dengan Power Spectra Density Berbasis Metode Welch Dan MLP Backpropagation2598-32452598-328810.31961/eltikom.v3i1.99https://doaj.org/article/13ac41ae12824cbb98863b1134b668d42019-05-01T00:00:00Zhttp://eltikom.poliban.ac.id/index.php/eltikom/article/view/99https://doaj.org/toc/2598-3245https://doaj.org/toc/2598-3288Electroencephalogram (EEG) signal is a signal that could become an information for study about disorders of brain function  such as Epilepsi. EEG that detected in epileptic seizures produce patterns that allow doctors to distinguish it from normal conditions. However, a visual analysis can not be done continuously. This study proposed a new hybrid method of EEG signal classification using Power Spectral Density (PSD) based on Welch method, Principle Component Analysis (PCA), and Multi Layer Perceptron Backpropagation.There are 3 main stages in this study, firstly preprocessing the dataset of EEG signals by Power Spectral Density (PSD) based on Welch method, then Principle Component Analysis (PCA) as a method of  dimensionallity reduction of the EEG signal data and the Multi Layer Perceptron Backpropagation for classifying a signal. Based on experimental results, the proposed method is successfully obtain high accuracy for the 80-20% training-testing partition (99.68%).Nursuci Putri HusainNurseno Bayu AjiP3M Politeknik Negeri Banjarmasinarticleclassificationelectroencephalogrampower spectra densityprinciple component analysismulti layer perceptron backpropagationElectrical engineering. Electronics. Nuclear engineeringTK1-9971Information technologyT58.5-58.64ENIDJurnal ELTIKOM: Jurnal Teknik Elektro, Teknologi Informasi dan Komputer, Vol 3, Iss 1, Pp 17-25 (2019)
institution DOAJ
collection DOAJ
language EN
ID
topic classification
electroencephalogram
power spectra density
principle component analysis
multi layer perceptron backpropagation
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Information technology
T58.5-58.64
spellingShingle classification
electroencephalogram
power spectra density
principle component analysis
multi layer perceptron backpropagation
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Information technology
T58.5-58.64
Nursuci Putri Husain
Nurseno Bayu Aji
Klasifikasi Sinyal EEG Dengan Power Spectra Density Berbasis Metode Welch Dan MLP Backpropagation
description Electroencephalogram (EEG) signal is a signal that could become an information for study about disorders of brain function  such as Epilepsi. EEG that detected in epileptic seizures produce patterns that allow doctors to distinguish it from normal conditions. However, a visual analysis can not be done continuously. This study proposed a new hybrid method of EEG signal classification using Power Spectral Density (PSD) based on Welch method, Principle Component Analysis (PCA), and Multi Layer Perceptron Backpropagation.There are 3 main stages in this study, firstly preprocessing the dataset of EEG signals by Power Spectral Density (PSD) based on Welch method, then Principle Component Analysis (PCA) as a method of  dimensionallity reduction of the EEG signal data and the Multi Layer Perceptron Backpropagation for classifying a signal. Based on experimental results, the proposed method is successfully obtain high accuracy for the 80-20% training-testing partition (99.68%).
format article
author Nursuci Putri Husain
Nurseno Bayu Aji
author_facet Nursuci Putri Husain
Nurseno Bayu Aji
author_sort Nursuci Putri Husain
title Klasifikasi Sinyal EEG Dengan Power Spectra Density Berbasis Metode Welch Dan MLP Backpropagation
title_short Klasifikasi Sinyal EEG Dengan Power Spectra Density Berbasis Metode Welch Dan MLP Backpropagation
title_full Klasifikasi Sinyal EEG Dengan Power Spectra Density Berbasis Metode Welch Dan MLP Backpropagation
title_fullStr Klasifikasi Sinyal EEG Dengan Power Spectra Density Berbasis Metode Welch Dan MLP Backpropagation
title_full_unstemmed Klasifikasi Sinyal EEG Dengan Power Spectra Density Berbasis Metode Welch Dan MLP Backpropagation
title_sort klasifikasi sinyal eeg dengan power spectra density berbasis metode welch dan mlp backpropagation
publisher P3M Politeknik Negeri Banjarmasin
publishDate 2019
url https://doaj.org/article/13ac41ae12824cbb98863b1134b668d4
work_keys_str_mv AT nursuciputrihusain klasifikasisinyaleegdenganpowerspectradensityberbasismetodewelchdanmlpbackpropagation
AT nursenobayuaji klasifikasisinyaleegdenganpowerspectradensityberbasismetodewelchdanmlpbackpropagation
_version_ 1718403239888551936