Macular Ganglion Cell-Inner Plexiform Layer Thickness Prediction from Red-free Fundus Photography using Hybrid Deep Learning Model
Abstract We developed a hybrid deep learning model (HDLM) algorithm that quantitatively predicts macular ganglion cell-inner plexiform layer (mGCIPL) thickness from red-free retinal nerve fiber layer photographs (RNFLPs). A total of 789 pairs of RNFLPs and spectral domain-optical coherence tomograph...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/13bcdaeaa2c84e4db26f61e511de5669 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:13bcdaeaa2c84e4db26f61e511de5669 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:13bcdaeaa2c84e4db26f61e511de56692021-12-02T10:59:52ZMacular Ganglion Cell-Inner Plexiform Layer Thickness Prediction from Red-free Fundus Photography using Hybrid Deep Learning Model10.1038/s41598-020-60277-y2045-2322https://doaj.org/article/13bcdaeaa2c84e4db26f61e511de56692020-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-60277-yhttps://doaj.org/toc/2045-2322Abstract We developed a hybrid deep learning model (HDLM) algorithm that quantitatively predicts macular ganglion cell-inner plexiform layer (mGCIPL) thickness from red-free retinal nerve fiber layer photographs (RNFLPs). A total of 789 pairs of RNFLPs and spectral domain-optical coherence tomography (SD-OCT) scans for 431 eyes of 259 participants (183 eyes of 114 healthy controls, 68 eyes of 46 glaucoma suspects, and 180 eyes of 99 glaucoma patients) were enrolled. An HDLM was built by combining a pre-trained deep learning network and support vector machine. The correlation coefficient and mean absolute error (MAE) between the predicted and measured mGCIPL thicknesses were calculated. The measured (OCT-based) and predicted (HDLM-based) average mGCIPL thicknesses were 73.96 ± 8.81 µm and 73.92 ± 7.36 µm, respectively (P = 0.844). The predicted mGCIPL thickness showed a strong correlation and good agreement with the measured mGCIPL thickness (Correlation coefficient r = 0.739; P < 0.001; MAE = 4.76 µm). Even when the peripapillary area (diameter: 1.5 disc diameters) was masked, the correlation (r = 0.713; P < 0.001) and agreement (MAE = 4.87 µm) were not changed significantly (P = 0.378 and 0.724, respectively). The trained HDLM algorithm showed a great capability for mGCIPL thickness prediction from RNFLPs.Jinho LeeYoung Kook KimAhnul HaSukkyu SunYong Woo KimJin-Soo KimJin Wook JeoungKi Ho ParkNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 10, Iss 1, Pp 1-10 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Jinho Lee Young Kook Kim Ahnul Ha Sukkyu Sun Yong Woo Kim Jin-Soo Kim Jin Wook Jeoung Ki Ho Park Macular Ganglion Cell-Inner Plexiform Layer Thickness Prediction from Red-free Fundus Photography using Hybrid Deep Learning Model |
description |
Abstract We developed a hybrid deep learning model (HDLM) algorithm that quantitatively predicts macular ganglion cell-inner plexiform layer (mGCIPL) thickness from red-free retinal nerve fiber layer photographs (RNFLPs). A total of 789 pairs of RNFLPs and spectral domain-optical coherence tomography (SD-OCT) scans for 431 eyes of 259 participants (183 eyes of 114 healthy controls, 68 eyes of 46 glaucoma suspects, and 180 eyes of 99 glaucoma patients) were enrolled. An HDLM was built by combining a pre-trained deep learning network and support vector machine. The correlation coefficient and mean absolute error (MAE) between the predicted and measured mGCIPL thicknesses were calculated. The measured (OCT-based) and predicted (HDLM-based) average mGCIPL thicknesses were 73.96 ± 8.81 µm and 73.92 ± 7.36 µm, respectively (P = 0.844). The predicted mGCIPL thickness showed a strong correlation and good agreement with the measured mGCIPL thickness (Correlation coefficient r = 0.739; P < 0.001; MAE = 4.76 µm). Even when the peripapillary area (diameter: 1.5 disc diameters) was masked, the correlation (r = 0.713; P < 0.001) and agreement (MAE = 4.87 µm) were not changed significantly (P = 0.378 and 0.724, respectively). The trained HDLM algorithm showed a great capability for mGCIPL thickness prediction from RNFLPs. |
format |
article |
author |
Jinho Lee Young Kook Kim Ahnul Ha Sukkyu Sun Yong Woo Kim Jin-Soo Kim Jin Wook Jeoung Ki Ho Park |
author_facet |
Jinho Lee Young Kook Kim Ahnul Ha Sukkyu Sun Yong Woo Kim Jin-Soo Kim Jin Wook Jeoung Ki Ho Park |
author_sort |
Jinho Lee |
title |
Macular Ganglion Cell-Inner Plexiform Layer Thickness Prediction from Red-free Fundus Photography using Hybrid Deep Learning Model |
title_short |
Macular Ganglion Cell-Inner Plexiform Layer Thickness Prediction from Red-free Fundus Photography using Hybrid Deep Learning Model |
title_full |
Macular Ganglion Cell-Inner Plexiform Layer Thickness Prediction from Red-free Fundus Photography using Hybrid Deep Learning Model |
title_fullStr |
Macular Ganglion Cell-Inner Plexiform Layer Thickness Prediction from Red-free Fundus Photography using Hybrid Deep Learning Model |
title_full_unstemmed |
Macular Ganglion Cell-Inner Plexiform Layer Thickness Prediction from Red-free Fundus Photography using Hybrid Deep Learning Model |
title_sort |
macular ganglion cell-inner plexiform layer thickness prediction from red-free fundus photography using hybrid deep learning model |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/13bcdaeaa2c84e4db26f61e511de5669 |
work_keys_str_mv |
AT jinholee macularganglioncellinnerplexiformlayerthicknesspredictionfromredfreefundusphotographyusinghybriddeeplearningmodel AT youngkookkim macularganglioncellinnerplexiformlayerthicknesspredictionfromredfreefundusphotographyusinghybriddeeplearningmodel AT ahnulha macularganglioncellinnerplexiformlayerthicknesspredictionfromredfreefundusphotographyusinghybriddeeplearningmodel AT sukkyusun macularganglioncellinnerplexiformlayerthicknesspredictionfromredfreefundusphotographyusinghybriddeeplearningmodel AT yongwookim macularganglioncellinnerplexiformlayerthicknesspredictionfromredfreefundusphotographyusinghybriddeeplearningmodel AT jinsookim macularganglioncellinnerplexiformlayerthicknesspredictionfromredfreefundusphotographyusinghybriddeeplearningmodel AT jinwookjeoung macularganglioncellinnerplexiformlayerthicknesspredictionfromredfreefundusphotographyusinghybriddeeplearningmodel AT kihopark macularganglioncellinnerplexiformlayerthicknesspredictionfromredfreefundusphotographyusinghybriddeeplearningmodel |
_version_ |
1718396338188582912 |