Model-Based Prediction of Operation Consequences When Driving a Car to Compensate for a Partially Restricted Visual Field by A-Pillars
The partial restriction of a driver’s visual field by the physical structure of the car (e.g., the A-pillar) can lead to unsafe situations where steering performance is degraded. Drivers require both environmental information and visual feedback regarding operation consequences. When driving with a...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/13c31c0a958e41f98d5b1cb39bf7459f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The partial restriction of a driver’s visual field by the physical structure of the car (e.g., the A-pillar) can lead to unsafe situations where steering performance is degraded. Drivers require both environmental information and visual feedback regarding operation consequences. When driving with a partially restricted visual field, and thus restricted visual feedback, drivers may predict operation consequences using a previously acquired internal model of a car. To investigate this hypothesis, we conducted a tracking and driving task in which visual information was restricted to varying degrees. In the tracking task, participants tracked a moving target on a computer screen with visible and invisible cursors. In the driving task, they drove a real car with or without the ability to see the distant parts of a visual field. Consequently, we found that the decrease in tracking performance induced by visual feedback restriction predicted the decrease in steering smoothness induced by visual field restriction, suggesting that model-based prediction was used in both tasks. These findings indicate that laboratory-based task performance can be used to identify drivers with low model-based prediction ability whose driving behavior is less optimal in restricted vision scenarios, even before they obtain a driver’s license. However, further studies are required to examine the underlying neural mechanisms and to establish the generalizability of these findings to more realistic settings. |
---|