Deep learning the structural determinants of protein biochemical properties by comparing structural ensembles with DiffNets
Comparing and contrasting structural ensembles of different protein variants helps connect specific structural features to a protein’s biochemical properties. Here, the authors propose DiffNets, a self-supervised, deep learning method that streamlines this process.
Guardado en:
Autores principales: | Michael D. Ward, Maxwell I. Zimmerman, Artur Meller, Moses Chung, S. J. Swamidass, Gregory R. Bowman |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/13c6be6650f24dc28b6a7660d1256cac |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
RNA secondary structure prediction using an ensemble of two-dimensional deep neural networks and transfer learning
por: Jaswinder Singh, et al.
Publicado: (2019) -
Deep/Transfer Learning with Feature Space Ensemble Networks (FeatSpaceEnsNets) and Average Ensemble Networks (AvgEnsNets) for Change Detection Using DInSAR Sentinel-1 and Optical Sentinel-2 Satellite Data Fusion
por: Zainoolabadien Karim, et al.
Publicado: (2021) -
DroidEnsemble: Detecting Android Malicious Applications With Ensemble of String and Structural Static Features
por: Wei Wang, et al.
Publicado: (2018) -
Counteracting structural errors in ensemble forecast of influenza outbreaks
por: Sen Pei, et al.
Publicado: (2017) -
LCS-EnsemNet: A Semisupervised Deep Neural Network for SAR Image Change Detection With Dual Feature Extraction and Label-Consistent Self-Ensemble
por: Jian Wang, et al.
Publicado: (2021)