Nontargeted Screening Using Gas Chromatography–Atmospheric Pressure Ionization Mass Spectrometry: Recent Trends and Emerging Potential

Gas chromatography–high-resolution mass spectrometry (GC–HRMS) is a powerful nontargeted screening technique that promises to accelerate the identification of environmental pollutants. Currently, most GC–HRMS instruments are equipped with electron ionization (EI), but atmospheric pressure ionization...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Xiaolei Li, Frank L. Dorman, Paul A. Helm, Sonya Kleywegt, André Simpson, Myrna J. Simpson, Karl J. Jobst
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/13c8037fba7a45a3856160355de55f00
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:13c8037fba7a45a3856160355de55f00
record_format dspace
spelling oai:doaj.org-article:13c8037fba7a45a3856160355de55f002021-11-25T18:28:23ZNontargeted Screening Using Gas Chromatography–Atmospheric Pressure Ionization Mass Spectrometry: Recent Trends and Emerging Potential10.3390/molecules262269111420-3049https://doaj.org/article/13c8037fba7a45a3856160355de55f002021-11-01T00:00:00Zhttps://www.mdpi.com/1420-3049/26/22/6911https://doaj.org/toc/1420-3049Gas chromatography–high-resolution mass spectrometry (GC–HRMS) is a powerful nontargeted screening technique that promises to accelerate the identification of environmental pollutants. Currently, most GC–HRMS instruments are equipped with electron ionization (EI), but atmospheric pressure ionization (API) ion sources have attracted renewed interest because: (i) collisional cooling at atmospheric pressure minimizes fragmentation, resulting in an increased yield of molecular ions for elemental composition determination and improved detection limits; (ii) a wide range of sophisticated tandem (ion mobility) mass spectrometers can be easily adapted for operation with GC–API; and (iii) the conditions of an atmospheric pressure ion source can promote structure diagnostic ion–molecule reactions that are otherwise difficult to perform using conventional GC–MS instrumentation. This literature review addresses the merits of GC–API for nontargeted screening while summarizing recent applications using various GC–API techniques. One perceived drawback of GC–API is the paucity of spectral libraries that can be used to guide structure elucidation. Herein, novel data acquisition, deconvolution and spectral prediction tools will be reviewed. With continued development, it is anticipated that API may eventually supplant EI as the de facto GC–MS ion source used to identify unknowns.Xiaolei LiFrank L. DormanPaul A. HelmSonya KleywegtAndré SimpsonMyrna J. SimpsonKarl J. JobstMDPI AGarticleGC–APIGC–APCIGC–APLIGC–APPIGC–MSpersistent organic pollutantsOrganic chemistryQD241-441ENMolecules, Vol 26, Iss 6911, p 6911 (2021)
institution DOAJ
collection DOAJ
language EN
topic GC–API
GC–APCI
GC–APLI
GC–APPI
GC–MS
persistent organic pollutants
Organic chemistry
QD241-441
spellingShingle GC–API
GC–APCI
GC–APLI
GC–APPI
GC–MS
persistent organic pollutants
Organic chemistry
QD241-441
Xiaolei Li
Frank L. Dorman
Paul A. Helm
Sonya Kleywegt
André Simpson
Myrna J. Simpson
Karl J. Jobst
Nontargeted Screening Using Gas Chromatography–Atmospheric Pressure Ionization Mass Spectrometry: Recent Trends and Emerging Potential
description Gas chromatography–high-resolution mass spectrometry (GC–HRMS) is a powerful nontargeted screening technique that promises to accelerate the identification of environmental pollutants. Currently, most GC–HRMS instruments are equipped with electron ionization (EI), but atmospheric pressure ionization (API) ion sources have attracted renewed interest because: (i) collisional cooling at atmospheric pressure minimizes fragmentation, resulting in an increased yield of molecular ions for elemental composition determination and improved detection limits; (ii) a wide range of sophisticated tandem (ion mobility) mass spectrometers can be easily adapted for operation with GC–API; and (iii) the conditions of an atmospheric pressure ion source can promote structure diagnostic ion–molecule reactions that are otherwise difficult to perform using conventional GC–MS instrumentation. This literature review addresses the merits of GC–API for nontargeted screening while summarizing recent applications using various GC–API techniques. One perceived drawback of GC–API is the paucity of spectral libraries that can be used to guide structure elucidation. Herein, novel data acquisition, deconvolution and spectral prediction tools will be reviewed. With continued development, it is anticipated that API may eventually supplant EI as the de facto GC–MS ion source used to identify unknowns.
format article
author Xiaolei Li
Frank L. Dorman
Paul A. Helm
Sonya Kleywegt
André Simpson
Myrna J. Simpson
Karl J. Jobst
author_facet Xiaolei Li
Frank L. Dorman
Paul A. Helm
Sonya Kleywegt
André Simpson
Myrna J. Simpson
Karl J. Jobst
author_sort Xiaolei Li
title Nontargeted Screening Using Gas Chromatography–Atmospheric Pressure Ionization Mass Spectrometry: Recent Trends and Emerging Potential
title_short Nontargeted Screening Using Gas Chromatography–Atmospheric Pressure Ionization Mass Spectrometry: Recent Trends and Emerging Potential
title_full Nontargeted Screening Using Gas Chromatography–Atmospheric Pressure Ionization Mass Spectrometry: Recent Trends and Emerging Potential
title_fullStr Nontargeted Screening Using Gas Chromatography–Atmospheric Pressure Ionization Mass Spectrometry: Recent Trends and Emerging Potential
title_full_unstemmed Nontargeted Screening Using Gas Chromatography–Atmospheric Pressure Ionization Mass Spectrometry: Recent Trends and Emerging Potential
title_sort nontargeted screening using gas chromatography–atmospheric pressure ionization mass spectrometry: recent trends and emerging potential
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/13c8037fba7a45a3856160355de55f00
work_keys_str_mv AT xiaoleili nontargetedscreeningusinggaschromatographyatmosphericpressureionizationmassspectrometryrecenttrendsandemergingpotential
AT frankldorman nontargetedscreeningusinggaschromatographyatmosphericpressureionizationmassspectrometryrecenttrendsandemergingpotential
AT paulahelm nontargetedscreeningusinggaschromatographyatmosphericpressureionizationmassspectrometryrecenttrendsandemergingpotential
AT sonyakleywegt nontargetedscreeningusinggaschromatographyatmosphericpressureionizationmassspectrometryrecenttrendsandemergingpotential
AT andresimpson nontargetedscreeningusinggaschromatographyatmosphericpressureionizationmassspectrometryrecenttrendsandemergingpotential
AT myrnajsimpson nontargetedscreeningusinggaschromatographyatmosphericpressureionizationmassspectrometryrecenttrendsandemergingpotential
AT karljjobst nontargetedscreeningusinggaschromatographyatmosphericpressureionizationmassspectrometryrecenttrendsandemergingpotential
_version_ 1718411059339984896