Nontargeted Screening Using Gas Chromatography–Atmospheric Pressure Ionization Mass Spectrometry: Recent Trends and Emerging Potential
Gas chromatography–high-resolution mass spectrometry (GC–HRMS) is a powerful nontargeted screening technique that promises to accelerate the identification of environmental pollutants. Currently, most GC–HRMS instruments are equipped with electron ionization (EI), but atmospheric pressure ionization...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/13c8037fba7a45a3856160355de55f00 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:13c8037fba7a45a3856160355de55f00 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:13c8037fba7a45a3856160355de55f002021-11-25T18:28:23ZNontargeted Screening Using Gas Chromatography–Atmospheric Pressure Ionization Mass Spectrometry: Recent Trends and Emerging Potential10.3390/molecules262269111420-3049https://doaj.org/article/13c8037fba7a45a3856160355de55f002021-11-01T00:00:00Zhttps://www.mdpi.com/1420-3049/26/22/6911https://doaj.org/toc/1420-3049Gas chromatography–high-resolution mass spectrometry (GC–HRMS) is a powerful nontargeted screening technique that promises to accelerate the identification of environmental pollutants. Currently, most GC–HRMS instruments are equipped with electron ionization (EI), but atmospheric pressure ionization (API) ion sources have attracted renewed interest because: (i) collisional cooling at atmospheric pressure minimizes fragmentation, resulting in an increased yield of molecular ions for elemental composition determination and improved detection limits; (ii) a wide range of sophisticated tandem (ion mobility) mass spectrometers can be easily adapted for operation with GC–API; and (iii) the conditions of an atmospheric pressure ion source can promote structure diagnostic ion–molecule reactions that are otherwise difficult to perform using conventional GC–MS instrumentation. This literature review addresses the merits of GC–API for nontargeted screening while summarizing recent applications using various GC–API techniques. One perceived drawback of GC–API is the paucity of spectral libraries that can be used to guide structure elucidation. Herein, novel data acquisition, deconvolution and spectral prediction tools will be reviewed. With continued development, it is anticipated that API may eventually supplant EI as the de facto GC–MS ion source used to identify unknowns.Xiaolei LiFrank L. DormanPaul A. HelmSonya KleywegtAndré SimpsonMyrna J. SimpsonKarl J. JobstMDPI AGarticleGC–APIGC–APCIGC–APLIGC–APPIGC–MSpersistent organic pollutantsOrganic chemistryQD241-441ENMolecules, Vol 26, Iss 6911, p 6911 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
GC–API GC–APCI GC–APLI GC–APPI GC–MS persistent organic pollutants Organic chemistry QD241-441 |
spellingShingle |
GC–API GC–APCI GC–APLI GC–APPI GC–MS persistent organic pollutants Organic chemistry QD241-441 Xiaolei Li Frank L. Dorman Paul A. Helm Sonya Kleywegt André Simpson Myrna J. Simpson Karl J. Jobst Nontargeted Screening Using Gas Chromatography–Atmospheric Pressure Ionization Mass Spectrometry: Recent Trends and Emerging Potential |
description |
Gas chromatography–high-resolution mass spectrometry (GC–HRMS) is a powerful nontargeted screening technique that promises to accelerate the identification of environmental pollutants. Currently, most GC–HRMS instruments are equipped with electron ionization (EI), but atmospheric pressure ionization (API) ion sources have attracted renewed interest because: (i) collisional cooling at atmospheric pressure minimizes fragmentation, resulting in an increased yield of molecular ions for elemental composition determination and improved detection limits; (ii) a wide range of sophisticated tandem (ion mobility) mass spectrometers can be easily adapted for operation with GC–API; and (iii) the conditions of an atmospheric pressure ion source can promote structure diagnostic ion–molecule reactions that are otherwise difficult to perform using conventional GC–MS instrumentation. This literature review addresses the merits of GC–API for nontargeted screening while summarizing recent applications using various GC–API techniques. One perceived drawback of GC–API is the paucity of spectral libraries that can be used to guide structure elucidation. Herein, novel data acquisition, deconvolution and spectral prediction tools will be reviewed. With continued development, it is anticipated that API may eventually supplant EI as the de facto GC–MS ion source used to identify unknowns. |
format |
article |
author |
Xiaolei Li Frank L. Dorman Paul A. Helm Sonya Kleywegt André Simpson Myrna J. Simpson Karl J. Jobst |
author_facet |
Xiaolei Li Frank L. Dorman Paul A. Helm Sonya Kleywegt André Simpson Myrna J. Simpson Karl J. Jobst |
author_sort |
Xiaolei Li |
title |
Nontargeted Screening Using Gas Chromatography–Atmospheric Pressure Ionization Mass Spectrometry: Recent Trends and Emerging Potential |
title_short |
Nontargeted Screening Using Gas Chromatography–Atmospheric Pressure Ionization Mass Spectrometry: Recent Trends and Emerging Potential |
title_full |
Nontargeted Screening Using Gas Chromatography–Atmospheric Pressure Ionization Mass Spectrometry: Recent Trends and Emerging Potential |
title_fullStr |
Nontargeted Screening Using Gas Chromatography–Atmospheric Pressure Ionization Mass Spectrometry: Recent Trends and Emerging Potential |
title_full_unstemmed |
Nontargeted Screening Using Gas Chromatography–Atmospheric Pressure Ionization Mass Spectrometry: Recent Trends and Emerging Potential |
title_sort |
nontargeted screening using gas chromatography–atmospheric pressure ionization mass spectrometry: recent trends and emerging potential |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/13c8037fba7a45a3856160355de55f00 |
work_keys_str_mv |
AT xiaoleili nontargetedscreeningusinggaschromatographyatmosphericpressureionizationmassspectrometryrecenttrendsandemergingpotential AT frankldorman nontargetedscreeningusinggaschromatographyatmosphericpressureionizationmassspectrometryrecenttrendsandemergingpotential AT paulahelm nontargetedscreeningusinggaschromatographyatmosphericpressureionizationmassspectrometryrecenttrendsandemergingpotential AT sonyakleywegt nontargetedscreeningusinggaschromatographyatmosphericpressureionizationmassspectrometryrecenttrendsandemergingpotential AT andresimpson nontargetedscreeningusinggaschromatographyatmosphericpressureionizationmassspectrometryrecenttrendsandemergingpotential AT myrnajsimpson nontargetedscreeningusinggaschromatographyatmosphericpressureionizationmassspectrometryrecenttrendsandemergingpotential AT karljjobst nontargetedscreeningusinggaschromatographyatmosphericpressureionizationmassspectrometryrecenttrendsandemergingpotential |
_version_ |
1718411059339984896 |