Inferring regulatory networks from expression data using tree-based methods.
One of the pressing open problems of computational systems biology is the elucidation of the topology of genetic regulatory networks (GRNs) using high throughput genomic data, in particular microarray gene expression data. The Dialogue for Reverse Engineering Assessments and Methods (DREAM) challeng...
Guardado en:
Autores principales: | Vân Anh Huynh-Thu, Alexandre Irrthum, Louis Wehenkel, Pierre Geurts |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2010
|
Materias: | |
Acceso en línea: | https://doaj.org/article/13e2336da0c54cd497a5c68406a2a9ae |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
KBoost: a new method to infer gene regulatory networks from gene expression data
por: Luis F. Iglesias-Martinez, et al.
Publicado: (2021) -
Inferring a transcriptional regulatory network from gene expression data using nonlinear manifold embedding.
por: Hossein Zare, et al.
Publicado: (2011) -
Versatile knowledge guided network inference method for prioritizing key regulatory factors in multi-omics data
por: Christoph Ogris, et al.
Publicado: (2021) -
Gene regulatory network inference from sparsely sampled noisy data
por: Atte Aalto, et al.
Publicado: (2020) -
Improved inference of gene regulatory networks through integrated Bayesian clustering and dynamic modeling of time-course expression data.
por: Brian Godsey
Publicado: (2013)