Energy-free machine learning force field for aluminum
Abstract We used the machine learning technique of Li et al. (PRL 114, 2015) for molecular dynamics simulations. Atomic configurations were described by feature matrix based on internal vectors, and linear regression was used as a learning technique. We implemented this approach in the LAMMPS code....
Guardado en:
Autores principales: | Ivan Kruglov, Oleg Sergeev, Alexey Yanilkin, Artem R. Oganov |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/13e9687800914490b751cb5d5f07ee43 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Towards exact molecular dynamics simulations with machine-learned force fields
por: Stefan Chmiela, et al.
Publicado: (2018) -
A general-purpose machine-learning force field for bulk and nanostructured phosphorus
por: Volker L. Deringer, et al.
Publicado: (2020) -
Machine learning based energy-free structure predictions of molecules, transition states, and solids
por: Dominik Lemm, et al.
Publicado: (2021) -
Improved prediction of solvation free energies by machine-learning polarizable continuum solvation model
por: Amin Alibakhshi, et al.
Publicado: (2021) -
Discharge Energy as a Key Contributing Factor Determining Microgeometry of Aluminum Samples Created by Electrical Discharge Machining
por: Katarzyna Peta, et al.
Publicado: (2021)