Proposed new methods for modifying the mechanical characteristics of the artificial stone
In this paper, factors affecting the mechanical properties of polymeric granite artificial stone have been investigated. Epoxy resin and three types of additives called Poly ether ether ketone, Silicon rubber, and Nanoclay have been used to make the artificial stone. Unlike previous research on resi...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | FA |
Publicado: |
Iranian Society of Structrual Engineering (ISSE)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/13fa5c8c4d784d12ace3e57af53c811c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:13fa5c8c4d784d12ace3e57af53c811c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:13fa5c8c4d784d12ace3e57af53c811c2021-11-08T15:54:19ZProposed new methods for modifying the mechanical characteristics of the artificial stone2476-39772538-261610.22065/jsce.2019.151172.1676https://doaj.org/article/13fa5c8c4d784d12ace3e57af53c811c2021-03-01T00:00:00Zhttps://www.jsce.ir/article_84253_635e8ceb11d21a7a80c6363ea9fccfad.pdfhttps://doaj.org/toc/2476-3977https://doaj.org/toc/2538-2616In this paper, factors affecting the mechanical properties of polymeric granite artificial stone have been investigated. Epoxy resin and three types of additives called Poly ether ether ketone, Silicon rubber, and Nanoclay have been used to make the artificial stone. Unlike previous research on resin alone, this study has been conducted on artificial stone and samples made using these materials. These samples are compared with the control sample and the sample with optimal mechanical characteristics. The method of making artificial stone is that crushed stone blend with resin, and is molded into molds that are defined according to the American Association of Materials and Testing. Samples were made with two percentages of 7.5 and 15 percent to determine the optimum amount of additive. After curing, the sample is subjected to testing. The results obtained from these experiments for artificial stone show that the addition of polyether ether ketone to epoxy resin compressive strength by more than 30%. 7.5wt% of Nanoclay increases more than 6% in compressive strength in epoxy resin. Therefore, the amount of 7.5% by weight of the additive has been selected as the optimum percentage and only this percent is considered in the manufacture of flexural and tensile strength samples. Adding Silicon rubber to the epoxy resin, increases the flexural strength by 7%. Contrary to expectation, Nanoclay reduces flexural strength significantly. By examining the results of the tensile test, it was determined that the addition of silicon to the epoxy resin increased the resistance to 46% . It is concluded that the addition of silicon rubber has been effective in increasing the compressive strength and in increasing the flexural and tensile strength and adding polyether ether ketone.Ahmad AlinezhadSadegh DardaeiHamed BagheriIranian Society of Structrual Engineering (ISSE)articleartificial stoneepoxyvinyelestersilicon rubberpoly ether ether ketonnanoclayBridge engineeringTG1-470Building constructionTH1-9745FAJournal of Structural and Construction Engineering, Vol 8, Iss 1, Pp 97-110 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
FA |
topic |
artificial stone epoxy vinyelester silicon rubber poly ether ether keton nanoclay Bridge engineering TG1-470 Building construction TH1-9745 |
spellingShingle |
artificial stone epoxy vinyelester silicon rubber poly ether ether keton nanoclay Bridge engineering TG1-470 Building construction TH1-9745 Ahmad Alinezhad Sadegh Dardaei Hamed Bagheri Proposed new methods for modifying the mechanical characteristics of the artificial stone |
description |
In this paper, factors affecting the mechanical properties of polymeric granite artificial stone have been investigated. Epoxy resin and three types of additives called Poly ether ether ketone, Silicon rubber, and Nanoclay have been used to make the artificial stone. Unlike previous research on resin alone, this study has been conducted on artificial stone and samples made using these materials. These samples are compared with the control sample and the sample with optimal mechanical characteristics. The method of making artificial stone is that crushed stone blend with resin, and is molded into molds that are defined according to the American Association of Materials and Testing. Samples were made with two percentages of 7.5 and 15 percent to determine the optimum amount of additive. After curing, the sample is subjected to testing. The results obtained from these experiments for artificial stone show that the addition of polyether ether ketone to epoxy resin compressive strength by more than 30%. 7.5wt% of Nanoclay increases more than 6% in compressive strength in epoxy resin. Therefore, the amount of 7.5% by weight of the additive has been selected as the optimum percentage and only this percent is considered in the manufacture of flexural and tensile strength samples. Adding Silicon rubber to the epoxy resin, increases the flexural strength by 7%. Contrary to expectation, Nanoclay reduces flexural strength significantly. By examining the results of the tensile test, it was determined that the addition of silicon to the epoxy resin increased the resistance to 46% . It is concluded that the addition of silicon rubber has been effective in increasing the compressive strength and in increasing the flexural and tensile strength and adding polyether ether ketone. |
format |
article |
author |
Ahmad Alinezhad Sadegh Dardaei Hamed Bagheri |
author_facet |
Ahmad Alinezhad Sadegh Dardaei Hamed Bagheri |
author_sort |
Ahmad Alinezhad |
title |
Proposed new methods for modifying the mechanical characteristics of the artificial stone |
title_short |
Proposed new methods for modifying the mechanical characteristics of the artificial stone |
title_full |
Proposed new methods for modifying the mechanical characteristics of the artificial stone |
title_fullStr |
Proposed new methods for modifying the mechanical characteristics of the artificial stone |
title_full_unstemmed |
Proposed new methods for modifying the mechanical characteristics of the artificial stone |
title_sort |
proposed new methods for modifying the mechanical characteristics of the artificial stone |
publisher |
Iranian Society of Structrual Engineering (ISSE) |
publishDate |
2021 |
url |
https://doaj.org/article/13fa5c8c4d784d12ace3e57af53c811c |
work_keys_str_mv |
AT ahmadalinezhad proposednewmethodsformodifyingthemechanicalcharacteristicsoftheartificialstone AT sadeghdardaei proposednewmethodsformodifyingthemechanicalcharacteristicsoftheartificialstone AT hamedbagheri proposednewmethodsformodifyingthemechanicalcharacteristicsoftheartificialstone |
_version_ |
1718441545527459840 |