Effect of synthesis conditions and composition on structural and phase states and electrical properties of nanogranular (FeCoZr)x (PZT)100-x films (30 ≤ x ≤ 85 at.%)

Granular films containing Fe50Co50Zr10 alloy nanoparticles inside Pb0,81Sr0,04(Na0,5Bi0,5)0,15(Zr0,575Ti0,425)O3 (PZT) ferroelectric matrix possess a combination of functional magnetic and electrical properties which can be efficiently controlled by means of external electric or magnetic fields. The...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Julia A. Fedotova
Formato: article
Lenguaje:EN
Publicado: Pensoft Publishers 2021
Materias:
Acceso en línea:https://doaj.org/article/1401283787da40919f2623de0adf7ead
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1401283787da40919f2623de0adf7ead
record_format dspace
spelling oai:doaj.org-article:1401283787da40919f2623de0adf7ead2021-12-03T04:30:36ZEffect of synthesis conditions and composition on structural and phase states and electrical properties of nanogranular (FeCoZr)x (PZT)100-x films (30 ≤ x ≤ 85 at.%)10.3897/j.moem.7.3.762772452-1779https://doaj.org/article/1401283787da40919f2623de0adf7ead2021-09-01T00:00:00Zhttps://moem.pensoft.net/article/76277/download/pdf/https://moem.pensoft.net/article/76277/download/xml/https://moem.pensoft.net/article/76277/https://doaj.org/toc/2452-1779Granular films containing Fe50Co50Zr10 alloy nanoparticles inside Pb0,81Sr0,04(Na0,5Bi0,5)0,15(Zr0,575Ti0,425)O3 (PZT) ferroelectric matrix possess a combination of functional magnetic and electrical properties which can be efficiently controlled by means of external electric or magnetic fields. The formation of the required granular structure in PZT matrix is only possible if synthesis is carried out in an oxygen-containing atmosphere leading to substantial oxidation of metallic nanoparticles. Thus an important task is to study the oxidation degree of metallic nanoparticles depending on synthesis conditions and the effect of forming phases on the electrical properties of the films. The relationship between the structural and phase state and electrical properties of granular FeCoZr)x (PZT)100-x films (30 ≤ x ≤ 85 at.%) synthesized in an oxygen-containing atmosphere at the oxygen pressure PO in a range of (2.4–5.0) · 10–3 Pa has been studied using X-ray diffraction, EXAFS and four-probe electrical resistivity measurement. Integrated comparative analysis of the structural and phase composition and local atomic order in (FeCoZr)x (PZT)100-x films has for the first time shown the fundamental role of oxygen pressure PO during synthesis on nanoparticle oxidation and phase composition. We show that the oxygen pressure being within PO = 3.2 · 10–3 Pa an increase in x leads to a transition from nanoparticles of Fe(Co,Zr)O complex oxides to a superposition of complex oxides and a-FeCo(Zr,O) ferromagnetic nanoparticles (or their agglomerations). At higher oxygen pressures РО = 5.0 · 10–3 Pa the nanoparticles undergo complete oxidation with the formation of the (FexCo1-x)1-δO complex oxide having a Wurtzite structure. The forming structural and phase composition allows one to explain the observed temperature dependences of the electrical resistivity of granular films. These dependences are distinguished by a negative temperature coefficient of electrical resistivity over the whole range of film compositions at a high oxygen pressure (РО = 5.0 · 10–3 Pa) and a transition to a positive temperature coefficient of electrical resistivity at a lower oxygen pressure (РО = 3.2 · 10–3 Pa) in the synthesis atmosphere and x > 69 at.% in the films. The transition from a negative to a positive temperature coefficient of electrical resistivity which suggests the presence of a metallic contribution to the conductivity is in full agreement with the X-ray diffraction and EXAFS data indicating the persistence of unoxidized a-FeCo(Zr,O) ferromagnetic nanoparticles or their agglomerations.Julia A. FedotovaPensoft PublishersarticleElectronicsTK7800-8360ENModern Electronic Materials, Vol 7, Iss 3, Pp 91-97 (2021)
institution DOAJ
collection DOAJ
language EN
topic Electronics
TK7800-8360
spellingShingle Electronics
TK7800-8360
Julia A. Fedotova
Effect of synthesis conditions and composition on structural and phase states and electrical properties of nanogranular (FeCoZr)x (PZT)100-x films (30 ≤ x ≤ 85 at.%)
description Granular films containing Fe50Co50Zr10 alloy nanoparticles inside Pb0,81Sr0,04(Na0,5Bi0,5)0,15(Zr0,575Ti0,425)O3 (PZT) ferroelectric matrix possess a combination of functional magnetic and electrical properties which can be efficiently controlled by means of external electric or magnetic fields. The formation of the required granular structure in PZT matrix is only possible if synthesis is carried out in an oxygen-containing atmosphere leading to substantial oxidation of metallic nanoparticles. Thus an important task is to study the oxidation degree of metallic nanoparticles depending on synthesis conditions and the effect of forming phases on the electrical properties of the films. The relationship between the structural and phase state and electrical properties of granular FeCoZr)x (PZT)100-x films (30 ≤ x ≤ 85 at.%) synthesized in an oxygen-containing atmosphere at the oxygen pressure PO in a range of (2.4–5.0) · 10–3 Pa has been studied using X-ray diffraction, EXAFS and four-probe electrical resistivity measurement. Integrated comparative analysis of the structural and phase composition and local atomic order in (FeCoZr)x (PZT)100-x films has for the first time shown the fundamental role of oxygen pressure PO during synthesis on nanoparticle oxidation and phase composition. We show that the oxygen pressure being within PO = 3.2 · 10–3 Pa an increase in x leads to a transition from nanoparticles of Fe(Co,Zr)O complex oxides to a superposition of complex oxides and a-FeCo(Zr,O) ferromagnetic nanoparticles (or their agglomerations). At higher oxygen pressures РО = 5.0 · 10–3 Pa the nanoparticles undergo complete oxidation with the formation of the (FexCo1-x)1-δO complex oxide having a Wurtzite structure. The forming structural and phase composition allows one to explain the observed temperature dependences of the electrical resistivity of granular films. These dependences are distinguished by a negative temperature coefficient of electrical resistivity over the whole range of film compositions at a high oxygen pressure (РО = 5.0 · 10–3 Pa) and a transition to a positive temperature coefficient of electrical resistivity at a lower oxygen pressure (РО = 3.2 · 10–3 Pa) in the synthesis atmosphere and x > 69 at.% in the films. The transition from a negative to a positive temperature coefficient of electrical resistivity which suggests the presence of a metallic contribution to the conductivity is in full agreement with the X-ray diffraction and EXAFS data indicating the persistence of unoxidized a-FeCo(Zr,O) ferromagnetic nanoparticles or their agglomerations.
format article
author Julia A. Fedotova
author_facet Julia A. Fedotova
author_sort Julia A. Fedotova
title Effect of synthesis conditions and composition on structural and phase states and electrical properties of nanogranular (FeCoZr)x (PZT)100-x films (30 ≤ x ≤ 85 at.%)
title_short Effect of synthesis conditions and composition on structural and phase states and electrical properties of nanogranular (FeCoZr)x (PZT)100-x films (30 ≤ x ≤ 85 at.%)
title_full Effect of synthesis conditions and composition on structural and phase states and electrical properties of nanogranular (FeCoZr)x (PZT)100-x films (30 ≤ x ≤ 85 at.%)
title_fullStr Effect of synthesis conditions and composition on structural and phase states and electrical properties of nanogranular (FeCoZr)x (PZT)100-x films (30 ≤ x ≤ 85 at.%)
title_full_unstemmed Effect of synthesis conditions and composition on structural and phase states and electrical properties of nanogranular (FeCoZr)x (PZT)100-x films (30 ≤ x ≤ 85 at.%)
title_sort effect of synthesis conditions and composition on structural and phase states and electrical properties of nanogranular (fecozr)x (pzt)100-x films (30 ≤ x ≤ 85 at.%)
publisher Pensoft Publishers
publishDate 2021
url https://doaj.org/article/1401283787da40919f2623de0adf7ead
work_keys_str_mv AT juliaafedotova effectofsynthesisconditionsandcompositiononstructuralandphasestatesandelectricalpropertiesofnanogranularfecozrxpzt100xfilms30x85at
_version_ 1718373914305888256