Application of machine learning to predict the occurrence of arrhythmia after acute myocardial infarction
Abstract Background Early identification of the occurrence of arrhythmia in patients with acute myocardial infarction plays an essential role in clinical decision-making. The present study attempted to use machine learning (ML) methods to build predictive models of arrhythmia after acute myocardial...
Guardado en:
Autores principales: | Suhuai Wang, Jingjie Li, Lin Sun, Jianing Cai, Shihui Wang, Linwen Zeng, Shaoqing Sun |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1408ba90f524444fb200c1a0479eda8a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Period of Arrhythmia Anchored around an Infarction Scar in an Anatomical Model of the Human Ventricles
por: Daria Mangileva, et al.
Publicado: (2021) -
Multitask Interactive Attention Learning Model Based on Hand Images for Assisting Chinese Medicine in Predicting Myocardial Infarction
por: Qida Wang, et al.
Publicado: (2021) -
Innate Lymphoid Cells and Myocardial Infarction
por: Wenling Yang, et al.
Publicado: (2021) -
Lack of Macrophage Migration Inhibitory Factor Reduces Susceptibility to Ventricular Arrhythmias During the Acute Phase of Myocardial Infarction
por: Lyu J, et al.
Publicado: (2021) -
CLINICAL OUTCOME OF PATIENTS ADMITTED WITH ACUTE ANTERIOR VERSUS ACUTE INFERIOR WALL MYOCARDIAL INFARCTION
por: Moazzam Khan, et al.
Publicado: (2020)