Synthesis and biological screening of new thiadiazolopyrimidine-based polycyclic compounds

Abstract Novel tri-and tetra-cyclic compounds based on the thiadiazolopyrimidine ring system were synthesized, and their antimicrobial activity was estimated. The obtained results evidenced the substantial efficiencies of pyrano-thiadiazolopyrimidine compounds 8a–b and 9a–b toward the two strains of...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Alaa M. Alqahtani
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/140fcaa949eb414c97097eb3d3b0f247
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:140fcaa949eb414c97097eb3d3b0f247
record_format dspace
spelling oai:doaj.org-article:140fcaa949eb414c97097eb3d3b0f2472021-12-02T16:34:05ZSynthesis and biological screening of new thiadiazolopyrimidine-based polycyclic compounds10.1038/s41598-021-95241-x2045-2322https://doaj.org/article/140fcaa949eb414c97097eb3d3b0f2472021-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-95241-xhttps://doaj.org/toc/2045-2322Abstract Novel tri-and tetra-cyclic compounds based on the thiadiazolopyrimidine ring system were synthesized, and their antimicrobial activity was estimated. The obtained results evidenced the substantial efficiencies of pyrano-thiadiazolopyrimidine compounds 8a–b and 9a–b toward the two strains of gram-positive bacteria (S. aureus and B. cereus). Besides, tetracyclic pyrazolopyrimido-thiadiazolopyrimidine derivatives 16a–b and 17a–b displayed prominent efficiencies toward the two strains of gram-negative bacteria (E. coli and P. aeruginosa). In addition, compounds 8a–b and 9a–b displayed good efficacy toward C. albicans. The activity of antiquorum sensing (anti-QS) inhibition of the newly synthesized thiadiazolopyrimidine-based compounds toward C. violaceum was tested, suggesting satisfactory activity for derivatives 16a–b, 17a–b, 8b, and 9a. The cytotoxic activity of these derivatives was screened toward various cancer cell lines (MCF-7, PC3, Hep-2, and HepG2) and standard normal fibroblast cells (WI38) by utilizing the MTT assay. The pyrazolopyrimido-thiadiazolopyrimidine derivatives 16a, 16b 17a, and 17b showed potent cytotoxic efficacy against the MCF-7 cells with the IC50 values ranging from 5.69 to 9.36 µM. Also, the endorsed structural activity relationship (SAR) of the inspected thiadiazolopyrimidine derivatives provided a correlation between the chemical structure and anticancer efficiency. The in silico docking studies were implemented for silencing the hormonal signaling in the breast (PDB Code-5NQR). The results were found to be consistent with the cytotoxic activity.Alaa M. AlqahtaniNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-15 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Alaa M. Alqahtani
Synthesis and biological screening of new thiadiazolopyrimidine-based polycyclic compounds
description Abstract Novel tri-and tetra-cyclic compounds based on the thiadiazolopyrimidine ring system were synthesized, and their antimicrobial activity was estimated. The obtained results evidenced the substantial efficiencies of pyrano-thiadiazolopyrimidine compounds 8a–b and 9a–b toward the two strains of gram-positive bacteria (S. aureus and B. cereus). Besides, tetracyclic pyrazolopyrimido-thiadiazolopyrimidine derivatives 16a–b and 17a–b displayed prominent efficiencies toward the two strains of gram-negative bacteria (E. coli and P. aeruginosa). In addition, compounds 8a–b and 9a–b displayed good efficacy toward C. albicans. The activity of antiquorum sensing (anti-QS) inhibition of the newly synthesized thiadiazolopyrimidine-based compounds toward C. violaceum was tested, suggesting satisfactory activity for derivatives 16a–b, 17a–b, 8b, and 9a. The cytotoxic activity of these derivatives was screened toward various cancer cell lines (MCF-7, PC3, Hep-2, and HepG2) and standard normal fibroblast cells (WI38) by utilizing the MTT assay. The pyrazolopyrimido-thiadiazolopyrimidine derivatives 16a, 16b 17a, and 17b showed potent cytotoxic efficacy against the MCF-7 cells with the IC50 values ranging from 5.69 to 9.36 µM. Also, the endorsed structural activity relationship (SAR) of the inspected thiadiazolopyrimidine derivatives provided a correlation between the chemical structure and anticancer efficiency. The in silico docking studies were implemented for silencing the hormonal signaling in the breast (PDB Code-5NQR). The results were found to be consistent with the cytotoxic activity.
format article
author Alaa M. Alqahtani
author_facet Alaa M. Alqahtani
author_sort Alaa M. Alqahtani
title Synthesis and biological screening of new thiadiazolopyrimidine-based polycyclic compounds
title_short Synthesis and biological screening of new thiadiazolopyrimidine-based polycyclic compounds
title_full Synthesis and biological screening of new thiadiazolopyrimidine-based polycyclic compounds
title_fullStr Synthesis and biological screening of new thiadiazolopyrimidine-based polycyclic compounds
title_full_unstemmed Synthesis and biological screening of new thiadiazolopyrimidine-based polycyclic compounds
title_sort synthesis and biological screening of new thiadiazolopyrimidine-based polycyclic compounds
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/140fcaa949eb414c97097eb3d3b0f247
work_keys_str_mv AT alaamalqahtani synthesisandbiologicalscreeningofnewthiadiazolopyrimidinebasedpolycycliccompounds
_version_ 1718383736421089280