Towards Using Unsupervised Learning for Comparing Traditional and Synchronous Online Learning in Assessing Students’ Academic Performance
Understanding students’ learning processes and education-related phenomena by extracting knowledge from educational data sets represents a continuous interest in the educational data mining domain. Due to an accelerated expansion of online learning and digitalisation in education, there is a growing...
Guardado en:
Autores principales: | Mariana-Ioana Maier, Gabriela Czibula, Zsuzsanna-Edit Oneţ-Marian |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1414eabffa594b0dae265d63010edaea |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Optimizing Few-Shot Learning Based on Variational Autoencoders
por: Ruoqi Wei, et al.
Publicado: (2021) -
Analysis of the Possibilities of Tire-Defect Inspection Based on Unsupervised Learning and Deep Learning
por: Ivan Kuric, et al.
Publicado: (2021) -
Blind Image Super Resolution Using Deep Unsupervised Learning
por: Kazuhiro Yamawaki, et al.
Publicado: (2021) -
Enhancing unsupervised medical entity linking with multi-instance learning
por: Cheng Yan, et al.
Publicado: (2021) -
Editorial: Unsupervised Learning Models for Unlabeled Genomic, Transcriptomic & Proteomic Data
por: Jianing Xi, et al.
Publicado: (2021)