Load data recovery method based on SOM-LSTM neural network
In the collection and transmission of power big data, the problem of data missing exists. In response to this problem, this paper proposes a power data detection and repair method based on SOM-LSTM. Firstly, a large amount of collected power data is analyzed and the type of missing data is determine...
Enregistré dans:
Auteurs principaux: | Yiming Ma, Junyou Yang, Jiawei Feng, Haixin Wang, Yunlu Li, Yingying Li |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Elsevier
2022
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/141c36bd4c034a11bfb0fc0ec12f8f19 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Load forecasting of electric vehicle charging station based on grey theory and neural network
par: Jiawei Feng, et autres
Publié: (2021) -
Research on maintenance spare parts requirement prediction based on LSTM recurrent neural network
par: Song Weixing, et autres
Publié: (2021) -
Comparing LSTM and GRU Models to Predict the Condition of a Pulp Paper Press
par: Balduíno César Mateus, et autres
Publié: (2021) -
Comparison of Machine Learning Methods for Image Reconstruction Using the LSTM Classifier in Industrial Electrical Tomography
par: Grzegorz Kłosowski, et autres
Publié: (2021) -
Using a Hybrid Neural Network Model DCNN–LSTM for Image-Based Nitrogen Nutrition Diagnosis in Muskmelon
par: Liying Chang, et autres
Publié: (2021)