Load data recovery method based on SOM-LSTM neural network
In the collection and transmission of power big data, the problem of data missing exists. In response to this problem, this paper proposes a power data detection and repair method based on SOM-LSTM. Firstly, a large amount of collected power data is analyzed and the type of missing data is determine...
Guardado en:
Autores principales: | Yiming Ma, Junyou Yang, Jiawei Feng, Haixin Wang, Yunlu Li, Yingying Li |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://doaj.org/article/141c36bd4c034a11bfb0fc0ec12f8f19 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Load forecasting of electric vehicle charging station based on grey theory and neural network
por: Jiawei Feng, et al.
Publicado: (2021) -
Research on maintenance spare parts requirement prediction based on LSTM recurrent neural network
por: Song Weixing, et al.
Publicado: (2021) -
Comparing LSTM and GRU Models to Predict the Condition of a Pulp Paper Press
por: Balduíno César Mateus, et al.
Publicado: (2021) -
Comparison of Machine Learning Methods for Image Reconstruction Using the LSTM Classifier in Industrial Electrical Tomography
por: Grzegorz Kłosowski, et al.
Publicado: (2021) -
Using a Hybrid Neural Network Model DCNN–LSTM for Image-Based Nitrogen Nutrition Diagnosis in Muskmelon
por: Liying Chang, et al.
Publicado: (2021)