System bias correction of short-term hub-height wind forecasts using the Kalman filter
Abstract Wind energy is a fluctuating source for power systems, which poses challenges to grid planning for the wind power industry. To improve the short-term wind forecasts at turbine height, the bias correction approach Kalman filter (KF) is applied to 72-h wind speed forecasts from the WRF model...
Guardado en:
Autores principales: | Jingjing Xu, Ziniu Xiao, Zhaohui Lin, Ming Li |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/141c7bb72bb24f6b9152530ac42048e9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Measurement and monitoring of overhead transmission line sag in smart grid: A review
por: Ayman Uddin Mahin, et al.
Publicado: (2022) -
A machine learning approach for real‐time selection of preventive actions improving power network resilience
por: Matthias Noebels, et al.
Publicado: (2022) -
A privacy‐preserving approach to day‐ahead TSO‐DSO coordinated stochastic scheduling for energy and reserve
por: Mahdi Habibi, et al.
Publicado: (2022) -
Reliability‐constrained robust expansion planning of active distribution networks
por: Rafael S. Pinto, et al.
Publicado: (2022) -
Modelling, simulating and parameter designing for traction power system with bidirectional converter devices
por: Jian Zhang, et al.
Publicado: (2022)