Ni–Ru-containing mixed oxide-based composites as precursors for ethanol steam reforming catalysts: Effect of the synthesis methods on the structural and catalytic properties
Ethanol steam reforming catalyst’s precursors, i.e., nanocomposites of complex oxides with the general formula [Pr0.15Sm0.15Ce0.35Zr0.35O2 + LaMn0.45Ni0.45Ru0.1O3] (1:1 by mass), were synthesized by three different methods. It was shown that two synthesis methods – ultrasonic dispersion and sequenti...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/14229af3dc064908a8ce34bffb87b115 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Ethanol steam reforming catalyst’s precursors, i.e., nanocomposites of complex oxides with the general formula [Pr0.15Sm0.15Ce0.35Zr0.35O2 + LaMn0.45Ni0.45Ru0.1O3] (1:1 by mass), were synthesized by three different methods. It was shown that two synthesis methods – ultrasonic dispersion and sequential polymeric method, lead to the formation of the nanocomposite perovskite–fluorite system with the specific surface area up to 50 m2/g. Reduction of samples at 400–500°C lead to the formation of Ni–Ru alloy nanoparticles strongly bound with the surface of oxide nanocomposite. Catalytic tests in ethanol steam reforming reaction at 500–600°C showed the highest specific activity of the sample prepared by the sequential polymeric method due to the location of Ni- and Ru-containing perovskite mainly on the surface of the composite providing a high concentration of active metal centers. At higher temperatures for all samples, ethanol conversion approached 100% with hydrogen yield varying in the range of 65–75%. A study of spent catalysts confirmed the absence of carbon deposits after long-term catalytic tests at 650°C. |
---|