Machine learning-based prediction of acute coronary syndrome using only the pre-hospital 12-lead electrocardiogram

Diagnosing a heart attack requires excessive testing and prolonged observation, which frequently requires hospital admission. Here the authors report a machine learning-based system based exclusively on ECG data that can help clinicians identify 37% more heart attacks during initial screening.

Guardado en:
Detalles Bibliográficos
Autores principales: Salah Al-Zaiti, Lucas Besomi, Zeineb Bouzid, Ziad Faramand, Stephanie Frisch, Christian Martin-Gill, Richard Gregg, Samir Saba, Clifton Callaway, Ervin Sejdić
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/142323e4d75448858fff5469968e3125
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Diagnosing a heart attack requires excessive testing and prolonged observation, which frequently requires hospital admission. Here the authors report a machine learning-based system based exclusively on ECG data that can help clinicians identify 37% more heart attacks during initial screening.