Machine learning-based prediction of acute coronary syndrome using only the pre-hospital 12-lead electrocardiogram
Diagnosing a heart attack requires excessive testing and prolonged observation, which frequently requires hospital admission. Here the authors report a machine learning-based system based exclusively on ECG data that can help clinicians identify 37% more heart attacks during initial screening.
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/142323e4d75448858fff5469968e3125 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:142323e4d75448858fff5469968e3125 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:142323e4d75448858fff5469968e31252021-12-02T17:06:35ZMachine learning-based prediction of acute coronary syndrome using only the pre-hospital 12-lead electrocardiogram10.1038/s41467-020-17804-22041-1723https://doaj.org/article/142323e4d75448858fff5469968e31252020-08-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-17804-2https://doaj.org/toc/2041-1723Diagnosing a heart attack requires excessive testing and prolonged observation, which frequently requires hospital admission. Here the authors report a machine learning-based system based exclusively on ECG data that can help clinicians identify 37% more heart attacks during initial screening.Salah Al-ZaitiLucas BesomiZeineb BouzidZiad FaramandStephanie FrischChristian Martin-GillRichard GreggSamir SabaClifton CallawayErvin SejdićNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-10 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Salah Al-Zaiti Lucas Besomi Zeineb Bouzid Ziad Faramand Stephanie Frisch Christian Martin-Gill Richard Gregg Samir Saba Clifton Callaway Ervin Sejdić Machine learning-based prediction of acute coronary syndrome using only the pre-hospital 12-lead electrocardiogram |
description |
Diagnosing a heart attack requires excessive testing and prolonged observation, which frequently requires hospital admission. Here the authors report a machine learning-based system based exclusively on ECG data that can help clinicians identify 37% more heart attacks during initial screening. |
format |
article |
author |
Salah Al-Zaiti Lucas Besomi Zeineb Bouzid Ziad Faramand Stephanie Frisch Christian Martin-Gill Richard Gregg Samir Saba Clifton Callaway Ervin Sejdić |
author_facet |
Salah Al-Zaiti Lucas Besomi Zeineb Bouzid Ziad Faramand Stephanie Frisch Christian Martin-Gill Richard Gregg Samir Saba Clifton Callaway Ervin Sejdić |
author_sort |
Salah Al-Zaiti |
title |
Machine learning-based prediction of acute coronary syndrome using only the pre-hospital 12-lead electrocardiogram |
title_short |
Machine learning-based prediction of acute coronary syndrome using only the pre-hospital 12-lead electrocardiogram |
title_full |
Machine learning-based prediction of acute coronary syndrome using only the pre-hospital 12-lead electrocardiogram |
title_fullStr |
Machine learning-based prediction of acute coronary syndrome using only the pre-hospital 12-lead electrocardiogram |
title_full_unstemmed |
Machine learning-based prediction of acute coronary syndrome using only the pre-hospital 12-lead electrocardiogram |
title_sort |
machine learning-based prediction of acute coronary syndrome using only the pre-hospital 12-lead electrocardiogram |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/142323e4d75448858fff5469968e3125 |
work_keys_str_mv |
AT salahalzaiti machinelearningbasedpredictionofacutecoronarysyndromeusingonlytheprehospital12leadelectrocardiogram AT lucasbesomi machinelearningbasedpredictionofacutecoronarysyndromeusingonlytheprehospital12leadelectrocardiogram AT zeinebbouzid machinelearningbasedpredictionofacutecoronarysyndromeusingonlytheprehospital12leadelectrocardiogram AT ziadfaramand machinelearningbasedpredictionofacutecoronarysyndromeusingonlytheprehospital12leadelectrocardiogram AT stephaniefrisch machinelearningbasedpredictionofacutecoronarysyndromeusingonlytheprehospital12leadelectrocardiogram AT christianmartingill machinelearningbasedpredictionofacutecoronarysyndromeusingonlytheprehospital12leadelectrocardiogram AT richardgregg machinelearningbasedpredictionofacutecoronarysyndromeusingonlytheprehospital12leadelectrocardiogram AT samirsaba machinelearningbasedpredictionofacutecoronarysyndromeusingonlytheprehospital12leadelectrocardiogram AT cliftoncallaway machinelearningbasedpredictionofacutecoronarysyndromeusingonlytheprehospital12leadelectrocardiogram AT ervinsejdic machinelearningbasedpredictionofacutecoronarysyndromeusingonlytheprehospital12leadelectrocardiogram |
_version_ |
1718381540051779584 |