Machine learning-based prediction of acute coronary syndrome using only the pre-hospital 12-lead electrocardiogram

Diagnosing a heart attack requires excessive testing and prolonged observation, which frequently requires hospital admission. Here the authors report a machine learning-based system based exclusively on ECG data that can help clinicians identify 37% more heart attacks during initial screening.

Guardado en:
Detalles Bibliográficos
Autores principales: Salah Al-Zaiti, Lucas Besomi, Zeineb Bouzid, Ziad Faramand, Stephanie Frisch, Christian Martin-Gill, Richard Gregg, Samir Saba, Clifton Callaway, Ervin Sejdić
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/142323e4d75448858fff5469968e3125
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:142323e4d75448858fff5469968e3125
record_format dspace
spelling oai:doaj.org-article:142323e4d75448858fff5469968e31252021-12-02T17:06:35ZMachine learning-based prediction of acute coronary syndrome using only the pre-hospital 12-lead electrocardiogram10.1038/s41467-020-17804-22041-1723https://doaj.org/article/142323e4d75448858fff5469968e31252020-08-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-17804-2https://doaj.org/toc/2041-1723Diagnosing a heart attack requires excessive testing and prolonged observation, which frequently requires hospital admission. Here the authors report a machine learning-based system based exclusively on ECG data that can help clinicians identify 37% more heart attacks during initial screening.Salah Al-ZaitiLucas BesomiZeineb BouzidZiad FaramandStephanie FrischChristian Martin-GillRichard GreggSamir SabaClifton CallawayErvin SejdićNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-10 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Salah Al-Zaiti
Lucas Besomi
Zeineb Bouzid
Ziad Faramand
Stephanie Frisch
Christian Martin-Gill
Richard Gregg
Samir Saba
Clifton Callaway
Ervin Sejdić
Machine learning-based prediction of acute coronary syndrome using only the pre-hospital 12-lead electrocardiogram
description Diagnosing a heart attack requires excessive testing and prolonged observation, which frequently requires hospital admission. Here the authors report a machine learning-based system based exclusively on ECG data that can help clinicians identify 37% more heart attacks during initial screening.
format article
author Salah Al-Zaiti
Lucas Besomi
Zeineb Bouzid
Ziad Faramand
Stephanie Frisch
Christian Martin-Gill
Richard Gregg
Samir Saba
Clifton Callaway
Ervin Sejdić
author_facet Salah Al-Zaiti
Lucas Besomi
Zeineb Bouzid
Ziad Faramand
Stephanie Frisch
Christian Martin-Gill
Richard Gregg
Samir Saba
Clifton Callaway
Ervin Sejdić
author_sort Salah Al-Zaiti
title Machine learning-based prediction of acute coronary syndrome using only the pre-hospital 12-lead electrocardiogram
title_short Machine learning-based prediction of acute coronary syndrome using only the pre-hospital 12-lead electrocardiogram
title_full Machine learning-based prediction of acute coronary syndrome using only the pre-hospital 12-lead electrocardiogram
title_fullStr Machine learning-based prediction of acute coronary syndrome using only the pre-hospital 12-lead electrocardiogram
title_full_unstemmed Machine learning-based prediction of acute coronary syndrome using only the pre-hospital 12-lead electrocardiogram
title_sort machine learning-based prediction of acute coronary syndrome using only the pre-hospital 12-lead electrocardiogram
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/142323e4d75448858fff5469968e3125
work_keys_str_mv AT salahalzaiti machinelearningbasedpredictionofacutecoronarysyndromeusingonlytheprehospital12leadelectrocardiogram
AT lucasbesomi machinelearningbasedpredictionofacutecoronarysyndromeusingonlytheprehospital12leadelectrocardiogram
AT zeinebbouzid machinelearningbasedpredictionofacutecoronarysyndromeusingonlytheprehospital12leadelectrocardiogram
AT ziadfaramand machinelearningbasedpredictionofacutecoronarysyndromeusingonlytheprehospital12leadelectrocardiogram
AT stephaniefrisch machinelearningbasedpredictionofacutecoronarysyndromeusingonlytheprehospital12leadelectrocardiogram
AT christianmartingill machinelearningbasedpredictionofacutecoronarysyndromeusingonlytheprehospital12leadelectrocardiogram
AT richardgregg machinelearningbasedpredictionofacutecoronarysyndromeusingonlytheprehospital12leadelectrocardiogram
AT samirsaba machinelearningbasedpredictionofacutecoronarysyndromeusingonlytheprehospital12leadelectrocardiogram
AT cliftoncallaway machinelearningbasedpredictionofacutecoronarysyndromeusingonlytheprehospital12leadelectrocardiogram
AT ervinsejdic machinelearningbasedpredictionofacutecoronarysyndromeusingonlytheprehospital12leadelectrocardiogram
_version_ 1718381540051779584