Stretchable and anti-impact iontronic pressure sensor with an ultrabroad linear range for biophysical monitoring and deep learning-aided knee rehabilitation
Abstract Monitoring biophysical signals such as body or organ movements and other physical phenomena is necessary for patient rehabilitation. However, stretchable flexible pressure sensors with high sensitivity and a broad range that can meet these requirements are still lacking. Herein, we successf...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Publishing Group
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1426aca51ad84623849b6775bbd1390e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Monitoring biophysical signals such as body or organ movements and other physical phenomena is necessary for patient rehabilitation. However, stretchable flexible pressure sensors with high sensitivity and a broad range that can meet these requirements are still lacking. Herein, we successfully monitored various vital biophysical features and implemented in-sensor dynamic deep learning for knee rehabilitation using an ultrabroad linear range and high-sensitivity stretchable iontronic pressure sensor (SIPS). We optimized the topological structure and material composition of the electrode to build a fully stretching on-skin sensor. The high sensitivity (12.43 kPa−1), ultrabroad linear sensing range (1 MPa), high pressure resolution (6.4 Pa), long-term durability (no decay after 12000 cycles), and excellent stretchability (up to 20%) allow the sensor to maintain operating stability, even in emergency cases with a high sudden impact force (near 1 MPa) applied to the sensor. As a practical demonstration, the SIPS can positively track biophysical signals such as pulse waves, muscle movements, and plantar pressure. Importantly, with the help of a neuro-inspired fully convolutional network algorithm, the SIPS can accurately predict knee joint postures for better rehabilitation after orthopedic surgery. Our SIPS has potential as a promising candidate for wearable electronics and artificial intelligent medical engineering owing to its unique high signal-to-noise ratio and ultrabroad linear range. An ultrabroad-linear range (1 MPa) iontronic pressure sensor with superior sensitivity (12.43 kPa-1) and stretchability (up to 20%) was proposed for biophysical monitoring and deep learning-based knee-rehabilitation training. |
---|