Combined burden and functional impact tests for cancer driver discovery using DriverPower

Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer who...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Shimin Shuai, PCAWG Drivers and Functional Interpretation Working Group, Steven Gallinger, Lincoln Stein, PCAWG Consortium
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/142b65513ccf441182a79c2cf78b29df
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:142b65513ccf441182a79c2cf78b29df
record_format dspace
spelling oai:doaj.org-article:142b65513ccf441182a79c2cf78b29df2021-12-02T17:32:59ZCombined burden and functional impact tests for cancer driver discovery using DriverPower10.1038/s41467-019-13929-12041-1723https://doaj.org/article/142b65513ccf441182a79c2cf78b29df2020-02-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-13929-1https://doaj.org/toc/2041-1723Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.Shimin ShuaiPCAWG Drivers and Functional Interpretation Working GroupSteven GallingerLincoln SteinPCAWG ConsortiumNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-12 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Shimin Shuai
PCAWG Drivers and Functional Interpretation Working Group
Steven Gallinger
Lincoln Stein
PCAWG Consortium
Combined burden and functional impact tests for cancer driver discovery using DriverPower
description Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.
format article
author Shimin Shuai
PCAWG Drivers and Functional Interpretation Working Group
Steven Gallinger
Lincoln Stein
PCAWG Consortium
author_facet Shimin Shuai
PCAWG Drivers and Functional Interpretation Working Group
Steven Gallinger
Lincoln Stein
PCAWG Consortium
author_sort Shimin Shuai
title Combined burden and functional impact tests for cancer driver discovery using DriverPower
title_short Combined burden and functional impact tests for cancer driver discovery using DriverPower
title_full Combined burden and functional impact tests for cancer driver discovery using DriverPower
title_fullStr Combined burden and functional impact tests for cancer driver discovery using DriverPower
title_full_unstemmed Combined burden and functional impact tests for cancer driver discovery using DriverPower
title_sort combined burden and functional impact tests for cancer driver discovery using driverpower
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/142b65513ccf441182a79c2cf78b29df
work_keys_str_mv AT shiminshuai combinedburdenandfunctionalimpacttestsforcancerdriverdiscoveryusingdriverpower
AT pcawgdriversandfunctionalinterpretationworkinggroup combinedburdenandfunctionalimpacttestsforcancerdriverdiscoveryusingdriverpower
AT stevengallinger combinedburdenandfunctionalimpacttestsforcancerdriverdiscoveryusingdriverpower
AT lincolnstein combinedburdenandfunctionalimpacttestsforcancerdriverdiscoveryusingdriverpower
AT pcawgconsortium combinedburdenandfunctionalimpacttestsforcancerdriverdiscoveryusingdriverpower
_version_ 1718380104915091456