Combined burden and functional impact tests for cancer driver discovery using DriverPower
Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer who...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/142b65513ccf441182a79c2cf78b29df |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:142b65513ccf441182a79c2cf78b29df |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:142b65513ccf441182a79c2cf78b29df2021-12-02T17:32:59ZCombined burden and functional impact tests for cancer driver discovery using DriverPower10.1038/s41467-019-13929-12041-1723https://doaj.org/article/142b65513ccf441182a79c2cf78b29df2020-02-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-13929-1https://doaj.org/toc/2041-1723Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.Shimin ShuaiPCAWG Drivers and Functional Interpretation Working GroupSteven GallingerLincoln SteinPCAWG ConsortiumNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-12 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Shimin Shuai PCAWG Drivers and Functional Interpretation Working Group Steven Gallinger Lincoln Stein PCAWG Consortium Combined burden and functional impact tests for cancer driver discovery using DriverPower |
description |
Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence. |
format |
article |
author |
Shimin Shuai PCAWG Drivers and Functional Interpretation Working Group Steven Gallinger Lincoln Stein PCAWG Consortium |
author_facet |
Shimin Shuai PCAWG Drivers and Functional Interpretation Working Group Steven Gallinger Lincoln Stein PCAWG Consortium |
author_sort |
Shimin Shuai |
title |
Combined burden and functional impact tests for cancer driver discovery using DriverPower |
title_short |
Combined burden and functional impact tests for cancer driver discovery using DriverPower |
title_full |
Combined burden and functional impact tests for cancer driver discovery using DriverPower |
title_fullStr |
Combined burden and functional impact tests for cancer driver discovery using DriverPower |
title_full_unstemmed |
Combined burden and functional impact tests for cancer driver discovery using DriverPower |
title_sort |
combined burden and functional impact tests for cancer driver discovery using driverpower |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/142b65513ccf441182a79c2cf78b29df |
work_keys_str_mv |
AT shiminshuai combinedburdenandfunctionalimpacttestsforcancerdriverdiscoveryusingdriverpower AT pcawgdriversandfunctionalinterpretationworkinggroup combinedburdenandfunctionalimpacttestsforcancerdriverdiscoveryusingdriverpower AT stevengallinger combinedburdenandfunctionalimpacttestsforcancerdriverdiscoveryusingdriverpower AT lincolnstein combinedburdenandfunctionalimpacttestsforcancerdriverdiscoveryusingdriverpower AT pcawgconsortium combinedburdenandfunctionalimpacttestsforcancerdriverdiscoveryusingdriverpower |
_version_ |
1718380104915091456 |