Benchmark and application of unsupervised classification approaches for univariate data

In the field of nanoscience, clustering methods have gained momentum for the analysis of experimental datasets with the aim of uncovering new physical properties. Here, the authors describe an unsupervised machine learning methodology that selects the optimal combination of feature space, clustering...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Maria El Abbassi, Jan Overbeck, Oliver Braun, Michel Calame, Herre S. J. van der Zant, Mickael L. Perrin
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/142f18d37da342038eb2d52cf28bd1d9
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In the field of nanoscience, clustering methods have gained momentum for the analysis of experimental datasets with the aim of uncovering new physical properties. Here, the authors describe an unsupervised machine learning methodology that selects the optimal combination of feature space, clustering method, and number of clusters for the analysis of a range of experimental datasets, including break-junction traces, I-V curves, and Raman spectra.