Benchmark and application of unsupervised classification approaches for univariate data
In the field of nanoscience, clustering methods have gained momentum for the analysis of experimental datasets with the aim of uncovering new physical properties. Here, the authors describe an unsupervised machine learning methodology that selects the optimal combination of feature space, clustering...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/142f18d37da342038eb2d52cf28bd1d9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:142f18d37da342038eb2d52cf28bd1d9 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:142f18d37da342038eb2d52cf28bd1d92021-12-02T13:30:41ZBenchmark and application of unsupervised classification approaches for univariate data10.1038/s42005-021-00549-92399-3650https://doaj.org/article/142f18d37da342038eb2d52cf28bd1d92021-03-01T00:00:00Zhttps://doi.org/10.1038/s42005-021-00549-9https://doaj.org/toc/2399-3650In the field of nanoscience, clustering methods have gained momentum for the analysis of experimental datasets with the aim of uncovering new physical properties. Here, the authors describe an unsupervised machine learning methodology that selects the optimal combination of feature space, clustering method, and number of clusters for the analysis of a range of experimental datasets, including break-junction traces, I-V curves, and Raman spectra.Maria El AbbassiJan OverbeckOliver BraunMichel CalameHerre S. J. van der ZantMickael L. PerrinNature PortfolioarticleAstrophysicsQB460-466PhysicsQC1-999ENCommunications Physics, Vol 4, Iss 1, Pp 1-9 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Astrophysics QB460-466 Physics QC1-999 |
spellingShingle |
Astrophysics QB460-466 Physics QC1-999 Maria El Abbassi Jan Overbeck Oliver Braun Michel Calame Herre S. J. van der Zant Mickael L. Perrin Benchmark and application of unsupervised classification approaches for univariate data |
description |
In the field of nanoscience, clustering methods have gained momentum for the analysis of experimental datasets with the aim of uncovering new physical properties. Here, the authors describe an unsupervised machine learning methodology that selects the optimal combination of feature space, clustering method, and number of clusters for the analysis of a range of experimental datasets, including break-junction traces, I-V curves, and Raman spectra. |
format |
article |
author |
Maria El Abbassi Jan Overbeck Oliver Braun Michel Calame Herre S. J. van der Zant Mickael L. Perrin |
author_facet |
Maria El Abbassi Jan Overbeck Oliver Braun Michel Calame Herre S. J. van der Zant Mickael L. Perrin |
author_sort |
Maria El Abbassi |
title |
Benchmark and application of unsupervised classification approaches for univariate data |
title_short |
Benchmark and application of unsupervised classification approaches for univariate data |
title_full |
Benchmark and application of unsupervised classification approaches for univariate data |
title_fullStr |
Benchmark and application of unsupervised classification approaches for univariate data |
title_full_unstemmed |
Benchmark and application of unsupervised classification approaches for univariate data |
title_sort |
benchmark and application of unsupervised classification approaches for univariate data |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/142f18d37da342038eb2d52cf28bd1d9 |
work_keys_str_mv |
AT mariaelabbassi benchmarkandapplicationofunsupervisedclassificationapproachesforunivariatedata AT janoverbeck benchmarkandapplicationofunsupervisedclassificationapproachesforunivariatedata AT oliverbraun benchmarkandapplicationofunsupervisedclassificationapproachesforunivariatedata AT michelcalame benchmarkandapplicationofunsupervisedclassificationapproachesforunivariatedata AT herresjvanderzant benchmarkandapplicationofunsupervisedclassificationapproachesforunivariatedata AT mickaellperrin benchmarkandapplicationofunsupervisedclassificationapproachesforunivariatedata |
_version_ |
1718392898308800512 |