Benchmark and application of unsupervised classification approaches for univariate data

In the field of nanoscience, clustering methods have gained momentum for the analysis of experimental datasets with the aim of uncovering new physical properties. Here, the authors describe an unsupervised machine learning methodology that selects the optimal combination of feature space, clustering...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Maria El Abbassi, Jan Overbeck, Oliver Braun, Michel Calame, Herre S. J. van der Zant, Mickael L. Perrin
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/142f18d37da342038eb2d52cf28bd1d9
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:142f18d37da342038eb2d52cf28bd1d9
record_format dspace
spelling oai:doaj.org-article:142f18d37da342038eb2d52cf28bd1d92021-12-02T13:30:41ZBenchmark and application of unsupervised classification approaches for univariate data10.1038/s42005-021-00549-92399-3650https://doaj.org/article/142f18d37da342038eb2d52cf28bd1d92021-03-01T00:00:00Zhttps://doi.org/10.1038/s42005-021-00549-9https://doaj.org/toc/2399-3650In the field of nanoscience, clustering methods have gained momentum for the analysis of experimental datasets with the aim of uncovering new physical properties. Here, the authors describe an unsupervised machine learning methodology that selects the optimal combination of feature space, clustering method, and number of clusters for the analysis of a range of experimental datasets, including break-junction traces, I-V curves, and Raman spectra.Maria El AbbassiJan OverbeckOliver BraunMichel CalameHerre S. J. van der ZantMickael L. PerrinNature PortfolioarticleAstrophysicsQB460-466PhysicsQC1-999ENCommunications Physics, Vol 4, Iss 1, Pp 1-9 (2021)
institution DOAJ
collection DOAJ
language EN
topic Astrophysics
QB460-466
Physics
QC1-999
spellingShingle Astrophysics
QB460-466
Physics
QC1-999
Maria El Abbassi
Jan Overbeck
Oliver Braun
Michel Calame
Herre S. J. van der Zant
Mickael L. Perrin
Benchmark and application of unsupervised classification approaches for univariate data
description In the field of nanoscience, clustering methods have gained momentum for the analysis of experimental datasets with the aim of uncovering new physical properties. Here, the authors describe an unsupervised machine learning methodology that selects the optimal combination of feature space, clustering method, and number of clusters for the analysis of a range of experimental datasets, including break-junction traces, I-V curves, and Raman spectra.
format article
author Maria El Abbassi
Jan Overbeck
Oliver Braun
Michel Calame
Herre S. J. van der Zant
Mickael L. Perrin
author_facet Maria El Abbassi
Jan Overbeck
Oliver Braun
Michel Calame
Herre S. J. van der Zant
Mickael L. Perrin
author_sort Maria El Abbassi
title Benchmark and application of unsupervised classification approaches for univariate data
title_short Benchmark and application of unsupervised classification approaches for univariate data
title_full Benchmark and application of unsupervised classification approaches for univariate data
title_fullStr Benchmark and application of unsupervised classification approaches for univariate data
title_full_unstemmed Benchmark and application of unsupervised classification approaches for univariate data
title_sort benchmark and application of unsupervised classification approaches for univariate data
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/142f18d37da342038eb2d52cf28bd1d9
work_keys_str_mv AT mariaelabbassi benchmarkandapplicationofunsupervisedclassificationapproachesforunivariatedata
AT janoverbeck benchmarkandapplicationofunsupervisedclassificationapproachesforunivariatedata
AT oliverbraun benchmarkandapplicationofunsupervisedclassificationapproachesforunivariatedata
AT michelcalame benchmarkandapplicationofunsupervisedclassificationapproachesforunivariatedata
AT herresjvanderzant benchmarkandapplicationofunsupervisedclassificationapproachesforunivariatedata
AT mickaellperrin benchmarkandapplicationofunsupervisedclassificationapproachesforunivariatedata
_version_ 1718392898308800512