A machine learning approach for online automated optimization of super-resolution optical microscopy
Complex imaging systems like super-resolution microscopes currently require laborious parameter optimization before imaging. Here, the authors present an imaging optimization framework based on machine learning that performs simultaneous parameter optimization to simplify this procedure for a wide r...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/143045b6f4774232ad56311e6c9d0510 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:143045b6f4774232ad56311e6c9d0510 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:143045b6f4774232ad56311e6c9d05102021-12-02T17:33:18ZA machine learning approach for online automated optimization of super-resolution optical microscopy10.1038/s41467-018-07668-y2041-1723https://doaj.org/article/143045b6f4774232ad56311e6c9d05102018-12-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-07668-yhttps://doaj.org/toc/2041-1723Complex imaging systems like super-resolution microscopes currently require laborious parameter optimization before imaging. Here, the authors present an imaging optimization framework based on machine learning that performs simultaneous parameter optimization to simplify this procedure for a wide range of imaging tasks.Audrey DurandTheresa WiesnerMarc-André GardnerLouis-Émile RobitailleAnthony BilodeauChristian GagnéPaul De KoninckFlavie Lavoie-CardinalNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-16 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Audrey Durand Theresa Wiesner Marc-André Gardner Louis-Émile Robitaille Anthony Bilodeau Christian Gagné Paul De Koninck Flavie Lavoie-Cardinal A machine learning approach for online automated optimization of super-resolution optical microscopy |
description |
Complex imaging systems like super-resolution microscopes currently require laborious parameter optimization before imaging. Here, the authors present an imaging optimization framework based on machine learning that performs simultaneous parameter optimization to simplify this procedure for a wide range of imaging tasks. |
format |
article |
author |
Audrey Durand Theresa Wiesner Marc-André Gardner Louis-Émile Robitaille Anthony Bilodeau Christian Gagné Paul De Koninck Flavie Lavoie-Cardinal |
author_facet |
Audrey Durand Theresa Wiesner Marc-André Gardner Louis-Émile Robitaille Anthony Bilodeau Christian Gagné Paul De Koninck Flavie Lavoie-Cardinal |
author_sort |
Audrey Durand |
title |
A machine learning approach for online automated optimization of super-resolution optical microscopy |
title_short |
A machine learning approach for online automated optimization of super-resolution optical microscopy |
title_full |
A machine learning approach for online automated optimization of super-resolution optical microscopy |
title_fullStr |
A machine learning approach for online automated optimization of super-resolution optical microscopy |
title_full_unstemmed |
A machine learning approach for online automated optimization of super-resolution optical microscopy |
title_sort |
machine learning approach for online automated optimization of super-resolution optical microscopy |
publisher |
Nature Portfolio |
publishDate |
2018 |
url |
https://doaj.org/article/143045b6f4774232ad56311e6c9d0510 |
work_keys_str_mv |
AT audreydurand amachinelearningapproachforonlineautomatedoptimizationofsuperresolutionopticalmicroscopy AT theresawiesner amachinelearningapproachforonlineautomatedoptimizationofsuperresolutionopticalmicroscopy AT marcandregardner amachinelearningapproachforonlineautomatedoptimizationofsuperresolutionopticalmicroscopy AT louisemilerobitaille amachinelearningapproachforonlineautomatedoptimizationofsuperresolutionopticalmicroscopy AT anthonybilodeau amachinelearningapproachforonlineautomatedoptimizationofsuperresolutionopticalmicroscopy AT christiangagne amachinelearningapproachforonlineautomatedoptimizationofsuperresolutionopticalmicroscopy AT pauldekoninck amachinelearningapproachforonlineautomatedoptimizationofsuperresolutionopticalmicroscopy AT flavielavoiecardinal amachinelearningapproachforonlineautomatedoptimizationofsuperresolutionopticalmicroscopy AT audreydurand machinelearningapproachforonlineautomatedoptimizationofsuperresolutionopticalmicroscopy AT theresawiesner machinelearningapproachforonlineautomatedoptimizationofsuperresolutionopticalmicroscopy AT marcandregardner machinelearningapproachforonlineautomatedoptimizationofsuperresolutionopticalmicroscopy AT louisemilerobitaille machinelearningapproachforonlineautomatedoptimizationofsuperresolutionopticalmicroscopy AT anthonybilodeau machinelearningapproachforonlineautomatedoptimizationofsuperresolutionopticalmicroscopy AT christiangagne machinelearningapproachforonlineautomatedoptimizationofsuperresolutionopticalmicroscopy AT pauldekoninck machinelearningapproachforonlineautomatedoptimizationofsuperresolutionopticalmicroscopy AT flavielavoiecardinal machinelearningapproachforonlineautomatedoptimizationofsuperresolutionopticalmicroscopy |
_version_ |
1718379984248111104 |