A machine learning approach for online automated optimization of super-resolution optical microscopy

Complex imaging systems like super-resolution microscopes currently require laborious parameter optimization before imaging. Here, the authors present an imaging optimization framework based on machine learning that performs simultaneous parameter optimization to simplify this procedure for a wide r...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Audrey Durand, Theresa Wiesner, Marc-André Gardner, Louis-Émile Robitaille, Anthony Bilodeau, Christian Gagné, Paul De Koninck, Flavie Lavoie-Cardinal
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/143045b6f4774232ad56311e6c9d0510
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:143045b6f4774232ad56311e6c9d0510
record_format dspace
spelling oai:doaj.org-article:143045b6f4774232ad56311e6c9d05102021-12-02T17:33:18ZA machine learning approach for online automated optimization of super-resolution optical microscopy10.1038/s41467-018-07668-y2041-1723https://doaj.org/article/143045b6f4774232ad56311e6c9d05102018-12-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-07668-yhttps://doaj.org/toc/2041-1723Complex imaging systems like super-resolution microscopes currently require laborious parameter optimization before imaging. Here, the authors present an imaging optimization framework based on machine learning that performs simultaneous parameter optimization to simplify this procedure for a wide range of imaging tasks.Audrey DurandTheresa WiesnerMarc-André GardnerLouis-Émile RobitailleAnthony BilodeauChristian GagnéPaul De KoninckFlavie Lavoie-CardinalNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-16 (2018)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Audrey Durand
Theresa Wiesner
Marc-André Gardner
Louis-Émile Robitaille
Anthony Bilodeau
Christian Gagné
Paul De Koninck
Flavie Lavoie-Cardinal
A machine learning approach for online automated optimization of super-resolution optical microscopy
description Complex imaging systems like super-resolution microscopes currently require laborious parameter optimization before imaging. Here, the authors present an imaging optimization framework based on machine learning that performs simultaneous parameter optimization to simplify this procedure for a wide range of imaging tasks.
format article
author Audrey Durand
Theresa Wiesner
Marc-André Gardner
Louis-Émile Robitaille
Anthony Bilodeau
Christian Gagné
Paul De Koninck
Flavie Lavoie-Cardinal
author_facet Audrey Durand
Theresa Wiesner
Marc-André Gardner
Louis-Émile Robitaille
Anthony Bilodeau
Christian Gagné
Paul De Koninck
Flavie Lavoie-Cardinal
author_sort Audrey Durand
title A machine learning approach for online automated optimization of super-resolution optical microscopy
title_short A machine learning approach for online automated optimization of super-resolution optical microscopy
title_full A machine learning approach for online automated optimization of super-resolution optical microscopy
title_fullStr A machine learning approach for online automated optimization of super-resolution optical microscopy
title_full_unstemmed A machine learning approach for online automated optimization of super-resolution optical microscopy
title_sort machine learning approach for online automated optimization of super-resolution optical microscopy
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/143045b6f4774232ad56311e6c9d0510
work_keys_str_mv AT audreydurand amachinelearningapproachforonlineautomatedoptimizationofsuperresolutionopticalmicroscopy
AT theresawiesner amachinelearningapproachforonlineautomatedoptimizationofsuperresolutionopticalmicroscopy
AT marcandregardner amachinelearningapproachforonlineautomatedoptimizationofsuperresolutionopticalmicroscopy
AT louisemilerobitaille amachinelearningapproachforonlineautomatedoptimizationofsuperresolutionopticalmicroscopy
AT anthonybilodeau amachinelearningapproachforonlineautomatedoptimizationofsuperresolutionopticalmicroscopy
AT christiangagne amachinelearningapproachforonlineautomatedoptimizationofsuperresolutionopticalmicroscopy
AT pauldekoninck amachinelearningapproachforonlineautomatedoptimizationofsuperresolutionopticalmicroscopy
AT flavielavoiecardinal amachinelearningapproachforonlineautomatedoptimizationofsuperresolutionopticalmicroscopy
AT audreydurand machinelearningapproachforonlineautomatedoptimizationofsuperresolutionopticalmicroscopy
AT theresawiesner machinelearningapproachforonlineautomatedoptimizationofsuperresolutionopticalmicroscopy
AT marcandregardner machinelearningapproachforonlineautomatedoptimizationofsuperresolutionopticalmicroscopy
AT louisemilerobitaille machinelearningapproachforonlineautomatedoptimizationofsuperresolutionopticalmicroscopy
AT anthonybilodeau machinelearningapproachforonlineautomatedoptimizationofsuperresolutionopticalmicroscopy
AT christiangagne machinelearningapproachforonlineautomatedoptimizationofsuperresolutionopticalmicroscopy
AT pauldekoninck machinelearningapproachforonlineautomatedoptimizationofsuperresolutionopticalmicroscopy
AT flavielavoiecardinal machinelearningapproachforonlineautomatedoptimizationofsuperresolutionopticalmicroscopy
_version_ 1718379984248111104