A machine learning approach for online automated optimization of super-resolution optical microscopy
Complex imaging systems like super-resolution microscopes currently require laborious parameter optimization before imaging. Here, the authors present an imaging optimization framework based on machine learning that performs simultaneous parameter optimization to simplify this procedure for a wide r...
Guardado en:
Autores principales: | Audrey Durand, Theresa Wiesner, Marc-André Gardner, Louis-Émile Robitaille, Anthony Bilodeau, Christian Gagné, Paul De Koninck, Flavie Lavoie-Cardinal |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/143045b6f4774232ad56311e6c9d0510 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Ensemble learning-iterative training machine learning for uncertainty quantification and automated experiment in atom-resolved microscopy
por: Ayana Ghosh, et al.
Publicado: (2021) -
Super-resolution spectroscopic microscopy via photon localization
por: Biqin Dong, et al.
Publicado: (2016) -
Automating multimodal microscopy with NanoJ-Fluidics
por: Pedro Almada, et al.
Publicado: (2019) -
Simultaneous spatiotemporal super-resolution and multi-parametric fluorescence microscopy
por: Jagadish Sankaran, et al.
Publicado: (2021) -
Quantifying accuracy and heterogeneity in single-molecule super-resolution microscopy
por: Hesam Mazidi, et al.
Publicado: (2020)