Counting is easier while experiencing a congruent motion.
Several studies suggest that numerical and spatial representations are intrinsically linked. Recent findings demonstrate that also motor actions interact with number magnitude processing, showing a motor-to-semantic effect. The current study assesses whether calculation processes can be modulated by...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1435960cffa54f30aadb81526850efee |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Several studies suggest that numerical and spatial representations are intrinsically linked. Recent findings demonstrate that also motor actions interact with number magnitude processing, showing a motor-to-semantic effect. The current study assesses whether calculation processes can be modulated by motions performed with the whole body. Participants were required to make additions or subtractions while performing (on-line condition) or after having experienced (off-line condition) an ascending or descending motion through a passive (i.e., taking the elevator) or an active (i.e., taking the stairs) mode. Results show a congruency effect between the type of calculation and the direction of the motion depending on: a) the off-line or on-line condition, b) the passive or active mode and c) the real or imagined task. Implications of the results for an embodied and grounded perspective view will be discussed. |
---|