Strong consistency of regression function estimator with martingale difference errors
In this paper, we consider the regression model with fixed design: Yi=g(xi)+εi{Y}_{i}=g\left({x}_{i})+{\varepsilon }_{i}, 1≤i≤n1\le i\le n, where {xi}\left\{{x}_{i}\right\} are the nonrandom design points, and {εi}\left\{{\varepsilon }_{i}\right\} is a sequence of martingale, and gg is an unknown fu...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/14377688ba5a45968b770d487b495447 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:14377688ba5a45968b770d487b495447 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:14377688ba5a45968b770d487b4954472021-12-05T14:10:53ZStrong consistency of regression function estimator with martingale difference errors2391-545510.1515/math-2021-0090https://doaj.org/article/14377688ba5a45968b770d487b4954472021-09-01T00:00:00Zhttps://doi.org/10.1515/math-2021-0090https://doaj.org/toc/2391-5455In this paper, we consider the regression model with fixed design: Yi=g(xi)+εi{Y}_{i}=g\left({x}_{i})+{\varepsilon }_{i}, 1≤i≤n1\le i\le n, where {xi}\left\{{x}_{i}\right\} are the nonrandom design points, and {εi}\left\{{\varepsilon }_{i}\right\} is a sequence of martingale, and gg is an unknown function. Nonparametric estimator gn(x){g}_{n}\left(x) of g(x)g\left(x) will be introduced and its strong convergence properties are established.Chen YingxiaDe Gruyterarticleregression functionmartingale differenceconsistency60f1562g05MathematicsQA1-939ENOpen Mathematics, Vol 19, Iss 1, Pp 1056-1068 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
regression function martingale difference consistency 60f15 62g05 Mathematics QA1-939 |
spellingShingle |
regression function martingale difference consistency 60f15 62g05 Mathematics QA1-939 Chen Yingxia Strong consistency of regression function estimator with martingale difference errors |
description |
In this paper, we consider the regression model with fixed design: Yi=g(xi)+εi{Y}_{i}=g\left({x}_{i})+{\varepsilon }_{i}, 1≤i≤n1\le i\le n, where {xi}\left\{{x}_{i}\right\} are the nonrandom design points, and {εi}\left\{{\varepsilon }_{i}\right\} is a sequence of martingale, and gg is an unknown function. Nonparametric estimator gn(x){g}_{n}\left(x) of g(x)g\left(x) will be introduced and its strong convergence properties are established. |
format |
article |
author |
Chen Yingxia |
author_facet |
Chen Yingxia |
author_sort |
Chen Yingxia |
title |
Strong consistency of regression function estimator with martingale difference errors |
title_short |
Strong consistency of regression function estimator with martingale difference errors |
title_full |
Strong consistency of regression function estimator with martingale difference errors |
title_fullStr |
Strong consistency of regression function estimator with martingale difference errors |
title_full_unstemmed |
Strong consistency of regression function estimator with martingale difference errors |
title_sort |
strong consistency of regression function estimator with martingale difference errors |
publisher |
De Gruyter |
publishDate |
2021 |
url |
https://doaj.org/article/14377688ba5a45968b770d487b495447 |
work_keys_str_mv |
AT chenyingxia strongconsistencyofregressionfunctionestimatorwithmartingaledifferenceerrors |
_version_ |
1718371585043202048 |