Strong consistency of regression function estimator with martingale difference errors

In this paper, we consider the regression model with fixed design: Yi=g(xi)+εi{Y}_{i}=g\left({x}_{i})+{\varepsilon }_{i}, 1≤i≤n1\le i\le n, where {xi}\left\{{x}_{i}\right\} are the nonrandom design points, and {εi}\left\{{\varepsilon }_{i}\right\} is a sequence of martingale, and gg is an unknown fu...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Chen Yingxia
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/14377688ba5a45968b770d487b495447
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:14377688ba5a45968b770d487b495447
record_format dspace
spelling oai:doaj.org-article:14377688ba5a45968b770d487b4954472021-12-05T14:10:53ZStrong consistency of regression function estimator with martingale difference errors2391-545510.1515/math-2021-0090https://doaj.org/article/14377688ba5a45968b770d487b4954472021-09-01T00:00:00Zhttps://doi.org/10.1515/math-2021-0090https://doaj.org/toc/2391-5455In this paper, we consider the regression model with fixed design: Yi=g(xi)+εi{Y}_{i}=g\left({x}_{i})+{\varepsilon }_{i}, 1≤i≤n1\le i\le n, where {xi}\left\{{x}_{i}\right\} are the nonrandom design points, and {εi}\left\{{\varepsilon }_{i}\right\} is a sequence of martingale, and gg is an unknown function. Nonparametric estimator gn(x){g}_{n}\left(x) of g(x)g\left(x) will be introduced and its strong convergence properties are established.Chen YingxiaDe Gruyterarticleregression functionmartingale differenceconsistency60f1562g05MathematicsQA1-939ENOpen Mathematics, Vol 19, Iss 1, Pp 1056-1068 (2021)
institution DOAJ
collection DOAJ
language EN
topic regression function
martingale difference
consistency
60f15
62g05
Mathematics
QA1-939
spellingShingle regression function
martingale difference
consistency
60f15
62g05
Mathematics
QA1-939
Chen Yingxia
Strong consistency of regression function estimator with martingale difference errors
description In this paper, we consider the regression model with fixed design: Yi=g(xi)+εi{Y}_{i}=g\left({x}_{i})+{\varepsilon }_{i}, 1≤i≤n1\le i\le n, where {xi}\left\{{x}_{i}\right\} are the nonrandom design points, and {εi}\left\{{\varepsilon }_{i}\right\} is a sequence of martingale, and gg is an unknown function. Nonparametric estimator gn(x){g}_{n}\left(x) of g(x)g\left(x) will be introduced and its strong convergence properties are established.
format article
author Chen Yingxia
author_facet Chen Yingxia
author_sort Chen Yingxia
title Strong consistency of regression function estimator with martingale difference errors
title_short Strong consistency of regression function estimator with martingale difference errors
title_full Strong consistency of regression function estimator with martingale difference errors
title_fullStr Strong consistency of regression function estimator with martingale difference errors
title_full_unstemmed Strong consistency of regression function estimator with martingale difference errors
title_sort strong consistency of regression function estimator with martingale difference errors
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/14377688ba5a45968b770d487b495447
work_keys_str_mv AT chenyingxia strongconsistencyofregressionfunctionestimatorwithmartingaledifferenceerrors
_version_ 1718371585043202048