Strong consistency of regression function estimator with martingale difference errors
In this paper, we consider the regression model with fixed design: Yi=g(xi)+εi{Y}_{i}=g\left({x}_{i})+{\varepsilon }_{i}, 1≤i≤n1\le i\le n, where {xi}\left\{{x}_{i}\right\} are the nonrandom design points, and {εi}\left\{{\varepsilon }_{i}\right\} is a sequence of martingale, and gg is an unknown fu...
Guardado en:
Autor principal: | Chen Yingxia |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/14377688ba5a45968b770d487b495447 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Asymptotic normality of the relative error regression function estimator for censored and time series data
por: Bouhadjera Feriel, et al.
Publicado: (2021) -
Multivariate radial symmetry of copula functions: finite sample comparison in the i.i.d case
por: Billio Monica, et al.
Publicado: (2021) -
On copulas of self-similar Ito processes
por: Jaworski Piotr, et al.
Publicado: (2021) -
On partially Schur-constant models and their associated copulas
por: Lefèvre Claude
Publicado: (2021) -
Path homology theory of edge-colored graphs
por: Muranov Yuri V., et al.
Publicado: (2021)