A Thermodynamic Model for Interpreting Tryptophan Excitation-Energy-Dependent Fluorescence Spectra Provides Insight Into Protein Conformational Sampling and Stability

It is now over 30 years since Demchenko and Ladokhin first posited the potential of the tryptophan red edge excitation shift (REES) effect to capture information on protein molecular dynamics. While there have been many key efforts in the intervening years, a biophysical thermodynamic model to quant...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: A Kwok, IS Camacho, S Winter, M Knight, RM Meade, MW Van der Kamp, A Turner, J O’Hara, JM Mason, AR Jones, VL Arcus, CR Pudney
Formato: article
Lenguaje:EN
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://doaj.org/article/1439860014ea47359cd6861b3f8b4edf
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1439860014ea47359cd6861b3f8b4edf
record_format dspace
spelling oai:doaj.org-article:1439860014ea47359cd6861b3f8b4edf2021-12-03T16:46:19ZA Thermodynamic Model for Interpreting Tryptophan Excitation-Energy-Dependent Fluorescence Spectra Provides Insight Into Protein Conformational Sampling and Stability2296-889X10.3389/fmolb.2021.778244https://doaj.org/article/1439860014ea47359cd6861b3f8b4edf2021-12-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fmolb.2021.778244/fullhttps://doaj.org/toc/2296-889XIt is now over 30 years since Demchenko and Ladokhin first posited the potential of the tryptophan red edge excitation shift (REES) effect to capture information on protein molecular dynamics. While there have been many key efforts in the intervening years, a biophysical thermodynamic model to quantify the relationship between the REES effect and protein flexibility has been lacking. Without such a model the full potential of the REES effect cannot be realized. Here, we present a thermodynamic model of the tryptophan REES effect that captures information on protein conformational flexibility, even with proteins containing multiple tryptophan residues. Our study incorporates exemplars at every scale, from tryptophan in solution, single tryptophan peptides, to multitryptophan proteins, with examples including a structurally disordered peptide, de novo designed enzyme, human regulatory protein, therapeutic monoclonal antibodies in active commercial development, and a mesophilic and hyperthermophilic enzyme. Combined, our model and data suggest a route forward for the experimental measurement of the protein REES effect and point to the potential for integrating biomolecular simulation with experimental data to yield novel insights.A KwokIS CamachoS WinterM KnightRM MeadeMW Van der KampA TurnerJ O’HaraJM MasonAR JonesVL ArcusCR PudneyCR PudneyFrontiers Media S.A.articleprotein stabilityred edge excitation shiftfluorescencetryptophanconformational samplingBiology (General)QH301-705.5ENFrontiers in Molecular Biosciences, Vol 8 (2021)
institution DOAJ
collection DOAJ
language EN
topic protein stability
red edge excitation shift
fluorescence
tryptophan
conformational sampling
Biology (General)
QH301-705.5
spellingShingle protein stability
red edge excitation shift
fluorescence
tryptophan
conformational sampling
Biology (General)
QH301-705.5
A Kwok
IS Camacho
S Winter
M Knight
RM Meade
MW Van der Kamp
A Turner
J O’Hara
JM Mason
AR Jones
VL Arcus
CR Pudney
CR Pudney
A Thermodynamic Model for Interpreting Tryptophan Excitation-Energy-Dependent Fluorescence Spectra Provides Insight Into Protein Conformational Sampling and Stability
description It is now over 30 years since Demchenko and Ladokhin first posited the potential of the tryptophan red edge excitation shift (REES) effect to capture information on protein molecular dynamics. While there have been many key efforts in the intervening years, a biophysical thermodynamic model to quantify the relationship between the REES effect and protein flexibility has been lacking. Without such a model the full potential of the REES effect cannot be realized. Here, we present a thermodynamic model of the tryptophan REES effect that captures information on protein conformational flexibility, even with proteins containing multiple tryptophan residues. Our study incorporates exemplars at every scale, from tryptophan in solution, single tryptophan peptides, to multitryptophan proteins, with examples including a structurally disordered peptide, de novo designed enzyme, human regulatory protein, therapeutic monoclonal antibodies in active commercial development, and a mesophilic and hyperthermophilic enzyme. Combined, our model and data suggest a route forward for the experimental measurement of the protein REES effect and point to the potential for integrating biomolecular simulation with experimental data to yield novel insights.
format article
author A Kwok
IS Camacho
S Winter
M Knight
RM Meade
MW Van der Kamp
A Turner
J O’Hara
JM Mason
AR Jones
VL Arcus
CR Pudney
CR Pudney
author_facet A Kwok
IS Camacho
S Winter
M Knight
RM Meade
MW Van der Kamp
A Turner
J O’Hara
JM Mason
AR Jones
VL Arcus
CR Pudney
CR Pudney
author_sort A Kwok
title A Thermodynamic Model for Interpreting Tryptophan Excitation-Energy-Dependent Fluorescence Spectra Provides Insight Into Protein Conformational Sampling and Stability
title_short A Thermodynamic Model for Interpreting Tryptophan Excitation-Energy-Dependent Fluorescence Spectra Provides Insight Into Protein Conformational Sampling and Stability
title_full A Thermodynamic Model for Interpreting Tryptophan Excitation-Energy-Dependent Fluorescence Spectra Provides Insight Into Protein Conformational Sampling and Stability
title_fullStr A Thermodynamic Model for Interpreting Tryptophan Excitation-Energy-Dependent Fluorescence Spectra Provides Insight Into Protein Conformational Sampling and Stability
title_full_unstemmed A Thermodynamic Model for Interpreting Tryptophan Excitation-Energy-Dependent Fluorescence Spectra Provides Insight Into Protein Conformational Sampling and Stability
title_sort thermodynamic model for interpreting tryptophan excitation-energy-dependent fluorescence spectra provides insight into protein conformational sampling and stability
publisher Frontiers Media S.A.
publishDate 2021
url https://doaj.org/article/1439860014ea47359cd6861b3f8b4edf
work_keys_str_mv AT akwok athermodynamicmodelforinterpretingtryptophanexcitationenergydependentfluorescencespectraprovidesinsightintoproteinconformationalsamplingandstability
AT iscamacho athermodynamicmodelforinterpretingtryptophanexcitationenergydependentfluorescencespectraprovidesinsightintoproteinconformationalsamplingandstability
AT swinter athermodynamicmodelforinterpretingtryptophanexcitationenergydependentfluorescencespectraprovidesinsightintoproteinconformationalsamplingandstability
AT mknight athermodynamicmodelforinterpretingtryptophanexcitationenergydependentfluorescencespectraprovidesinsightintoproteinconformationalsamplingandstability
AT rmmeade athermodynamicmodelforinterpretingtryptophanexcitationenergydependentfluorescencespectraprovidesinsightintoproteinconformationalsamplingandstability
AT mwvanderkamp athermodynamicmodelforinterpretingtryptophanexcitationenergydependentfluorescencespectraprovidesinsightintoproteinconformationalsamplingandstability
AT aturner athermodynamicmodelforinterpretingtryptophanexcitationenergydependentfluorescencespectraprovidesinsightintoproteinconformationalsamplingandstability
AT johara athermodynamicmodelforinterpretingtryptophanexcitationenergydependentfluorescencespectraprovidesinsightintoproteinconformationalsamplingandstability
AT jmmason athermodynamicmodelforinterpretingtryptophanexcitationenergydependentfluorescencespectraprovidesinsightintoproteinconformationalsamplingandstability
AT arjones athermodynamicmodelforinterpretingtryptophanexcitationenergydependentfluorescencespectraprovidesinsightintoproteinconformationalsamplingandstability
AT vlarcus athermodynamicmodelforinterpretingtryptophanexcitationenergydependentfluorescencespectraprovidesinsightintoproteinconformationalsamplingandstability
AT crpudney athermodynamicmodelforinterpretingtryptophanexcitationenergydependentfluorescencespectraprovidesinsightintoproteinconformationalsamplingandstability
AT crpudney athermodynamicmodelforinterpretingtryptophanexcitationenergydependentfluorescencespectraprovidesinsightintoproteinconformationalsamplingandstability
AT akwok thermodynamicmodelforinterpretingtryptophanexcitationenergydependentfluorescencespectraprovidesinsightintoproteinconformationalsamplingandstability
AT iscamacho thermodynamicmodelforinterpretingtryptophanexcitationenergydependentfluorescencespectraprovidesinsightintoproteinconformationalsamplingandstability
AT swinter thermodynamicmodelforinterpretingtryptophanexcitationenergydependentfluorescencespectraprovidesinsightintoproteinconformationalsamplingandstability
AT mknight thermodynamicmodelforinterpretingtryptophanexcitationenergydependentfluorescencespectraprovidesinsightintoproteinconformationalsamplingandstability
AT rmmeade thermodynamicmodelforinterpretingtryptophanexcitationenergydependentfluorescencespectraprovidesinsightintoproteinconformationalsamplingandstability
AT mwvanderkamp thermodynamicmodelforinterpretingtryptophanexcitationenergydependentfluorescencespectraprovidesinsightintoproteinconformationalsamplingandstability
AT aturner thermodynamicmodelforinterpretingtryptophanexcitationenergydependentfluorescencespectraprovidesinsightintoproteinconformationalsamplingandstability
AT johara thermodynamicmodelforinterpretingtryptophanexcitationenergydependentfluorescencespectraprovidesinsightintoproteinconformationalsamplingandstability
AT jmmason thermodynamicmodelforinterpretingtryptophanexcitationenergydependentfluorescencespectraprovidesinsightintoproteinconformationalsamplingandstability
AT arjones thermodynamicmodelforinterpretingtryptophanexcitationenergydependentfluorescencespectraprovidesinsightintoproteinconformationalsamplingandstability
AT vlarcus thermodynamicmodelforinterpretingtryptophanexcitationenergydependentfluorescencespectraprovidesinsightintoproteinconformationalsamplingandstability
AT crpudney thermodynamicmodelforinterpretingtryptophanexcitationenergydependentfluorescencespectraprovidesinsightintoproteinconformationalsamplingandstability
AT crpudney thermodynamicmodelforinterpretingtryptophanexcitationenergydependentfluorescencespectraprovidesinsightintoproteinconformationalsamplingandstability
_version_ 1718373131851137024