Modeling and predicting suspended sediment load under climate change conditions: a new hybridization strategy
In the present study, for the first time, a new strategy based on a combination of the hybrid least-squares support-vector machine (LS-SVM) and flower pollination algorithm (FPA), average 24 general circulation model (GCM) output, and delta change factor method has been developed to achieve the impa...
Guardado en:
Autores principales: | Saeed Farzin, Mahdi Valikhan Anaraki |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IWA Publishing
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/143b271291d349bbbb1fd1925c7efa59 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Application of Whale Optimization Algorithm Combined with Adaptive Neuro-Fuzzy Inference System for Estimating Suspended Sediment Load
por: Hojjat Emami, et al.
Publicado: (2021) -
The potential of ensemble WT-EEMD-kernel extreme learning machine techniques for prediction suspended sediment concentration in successive points of a river
por: Kiyoumars Roushangar, et al.
Publicado: (2021) -
Suspended sediment input from crushed-stone ford construction on the Canadian Shield in Quebec
por: Karelle Gilbert, et al.
Publicado: (2021) -
ENHANCEMENT SPECTRAL RESOLUTION FOR THE PREDICTION AMOUNT OF SOFOSBUVIR AND LEDIPASVIR USING LEAST SQUARES SUPPORT VECTOR MACHINE AND ARTIFICIAL NEURAL NETWORKS IN PHARMACEUTICAL FORMULATION
por: Safakhoo,Negin, et al.
Publicado: (2019) -
Hybrid connectionist model determines CO2–oil swelling factor
por: Mohammad Ali Ahmadi, et al.
Publicado: (2018)