A multi-hazard map-based flooding, gully erosion, forest fires, and earthquakes in Iran
Abstract We used three state-of-the-art machine learning techniques (boosted regression tree, random forest, and support vector machine) to produce a multi-hazard (MHR) map illustrating areas susceptible to flooding, gully erosion, forest fires, and earthquakes in Kohgiluyeh and Boyer-Ahmad Province...
Guardado en:
Autores principales: | Soheila Pouyan, Hamid Reza Pourghasemi, Mojgan Bordbar, Soroor Rahmanian, John J. Clague |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/144be68bf8ca4efc8223588f0370d8d5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Models of Gully Erosion by Water
por: Aleksey Sidorchuk
Publicado: (2021) -
Credal decision tree based novel ensemble models for spatial assessment of gully erosion and sustainable management
por: Alireza Arabameri, et al.
Publicado: (2021) -
Evaluation of Gully Erosion Susceptibility Using a Maximum Entropy Model in the Upper Mkhomazi River Basin in South Africa
por: Alice Bernini, et al.
Publicado: (2021) -
Assessing gully erosion susceptibility using topographic derived attributes, multi-criteria decision-making, and machine learning classifiers
por: Ahmed J. Al-Bawi, et al.
Publicado: (2021) -
Sensitivity study on forest fire breakout and propagation conditions for forest fire hazard curve evaluations
por: Yasushi OKANO, et al.
Publicado: (2017)