A stacking ensemble deep learning approach to cancer type classification based on TCGA data
Abstract Cancer tumor classification based on morphological characteristics alone has been shown to have serious limitations. Breast, lung, colorectal, thyroid, and ovarian are the most commonly diagnosed cancers among women. Precise classification of cancers into their types is considered a vital p...
Guardado en:
Autores principales: | Mohanad Mohammed, Henry Mwambi, Innocent B. Mboya, Murtada K. Elbashir, Bernard Omolo |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/14921c74d88140be99f7c371288091d2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Joint Modeling of Singleton Preterm Birth and Perinatal Death Using Birth Registry Cohort Data in Northern Tanzania
por: Innocent B. Mboya, et al.
Publicado: (2021) -
Stacking Ensemble Methodology Using Deep Learning and ARIMA Models for Short-Term Load Forecasting
por: Pedro M. R. Bento, et al.
Publicado: (2021) -
Deep learning and ensemble stacking technique for differentiating polypoidal choroidal vasculopathy from neovascular age-related macular degeneration
por: Yu-Bai Chou, et al.
Publicado: (2021) -
Multiclass Skin Cancer Classification Using Ensemble of Fine-Tuned Deep Learning Models
por: Nabeela Kausar, et al.
Publicado: (2021) -
Hybrid Wavelet Stacking Ensemble Model for Insulators Contamination Forecasting
por: Stefano Frizzo Stefenon, et al.
Publicado: (2021)