Atrial fibrillation detection in outpatient electrocardiogram monitoring: An algorithmic crowdsourcing approach.
<h4>Background</h4>Atrial fibrillation (AFib) is the most common cardiac arrhythmia associated with stroke, blood clots, heart failure, coronary artery disease, and/or death. Multiple methods have been proposed for AFib detection, with varying performances, but no single approach appears...
Guardado en:
Autores principales: | Ali Bahrami Rad, Conner Galloway, Daniel Treiman, Joel Xue, Qiao Li, Reza Sameni, Dave Albert, Gari D Clifford |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/14aa021610a9489796f1e8ffd80b806e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Atrial fibrillation detection in outpatient electrocardiogram monitoring: An algorithmic crowdsourcing approach
por: Ali Bahrami Rad, et al.
Publicado: (2021) -
A new deep learning algorithm of 12-lead electrocardiogram for identifying atrial fibrillation during sinus rhythm
por: Yong-Soo Baek, et al.
Publicado: (2021) -
Characteristics of the Dynamic Electrocardiogram in the Elderly with Nonvalvular Atrial Fibrillation Combined with Long R-R Intervals
por: Hongyuan Xu, et al.
Publicado: (2021) -
A Novel Machine Learning Approach to Classify and Detect Atrial Fibrillation Using Optimized Implantable Electrocardiogram Sensor
por: Seyed Jamaleddin Mostafavi Yazdi, et al.
Publicado: (2021) -
Dynamics of Holter electrocardiogram monitoring in patients with chronic heart failure and atrial fibrillation on the background of cardiac contractility modulation
por: Alfiya A. Safiullina, et al.
Publicado: (2021)