Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer
Breast cancer is frequently diagnosed using ultrasound. Here, the authors show that, in addition to ultrasound, shear wave elastography can be used to diagnose breast cancer and, in conjunction with deep learning and radiomics, can predict whether the disease has spread to axillary lymph nodes.
Guardado en:
Autores principales: | Xueyi Zheng, Zhao Yao, Yini Huang, Yanyan Yu, Yun Wang, Yubo Liu, Rushuang Mao, Fei Li, Yang Xiao, Yuanyuan Wang, Yixin Hu, Jinhua Yu, Jianhua Zhou |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/14c419f0a9b945d79c84bcbb498ac615 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Author Correction: Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer
por: Xueyi Zheng, et al.
Publicado: (2021) -
Lymph node metastasis prediction of papillary thyroid carcinoma based on transfer learning radiomics
por: Jinhua Yu, et al.
Publicado: (2020) -
Five-year follow-up of treatment outcomes in patients with early-stage breast cancer and clinically negative axillary nodes treated with no lymph node dissection or axillary clearance
por: Yamamoto D, et al.
Publicado: (2012) -
Prognostic value of extranodal extension in axillary lymph node-positive breast cancer
por: XiaoXi Ma, et al.
Publicado: (2021) -
Modern view on the issues of diagnosis and verification of axillary lymph nodes involvement in early breast cancer
por: Irina V. Kolyadina, et al.
Publicado: (2020)