Med-BERT: pretrained contextualized embeddings on large-scale structured electronic health records for disease prediction
Abstract Deep learning (DL)-based predictive models from electronic health records (EHRs) deliver impressive performance in many clinical tasks. Large training cohorts, however, are often required by these models to achieve high accuracy, hindering the adoption of DL-based models in scenarios with l...
Enregistré dans:
| Auteurs principaux: | Laila Rasmy, Yang Xiang, Ziqian Xie, Cui Tao, Degui Zhi |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
Nature Portfolio
2021
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/14d44497dee74dfdb722302b6ea95c47 |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Predicting critical state after COVID-19 diagnosis: model development using a large US electronic health record dataset
par: Mike D. Rinderknecht, et autres
Publié: (2021) -
Natural language word embeddings as a glimpse into healthcare language and associated mortality surrounding end of life
par: Wei Gao, et autres
Publié: (2021) -
Scalable and accurate deep learning with electronic health records
par: Alvin Rajkomar, et autres
Publié: (2018) -
Fine-Tuning Word Embeddings for Hierarchical Representation of Data Using a Corpus and a Knowledge Base for Various Machine Learning Applications
par: Mohammed Alsuhaibani, et autres
Publié: (2021) -
Blockchain vehicles for efficient Medical Record management
par: Anuraag A. Vazirani, et autres
Publié: (2020)