Med-BERT: pretrained contextualized embeddings on large-scale structured electronic health records for disease prediction
Abstract Deep learning (DL)-based predictive models from electronic health records (EHRs) deliver impressive performance in many clinical tasks. Large training cohorts, however, are often required by these models to achieve high accuracy, hindering the adoption of DL-based models in scenarios with l...
Guardado en:
Autores principales: | Laila Rasmy, Yang Xiang, Ziqian Xie, Cui Tao, Degui Zhi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/14d44497dee74dfdb722302b6ea95c47 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Predicting critical state after COVID-19 diagnosis: model development using a large US electronic health record dataset
por: Mike D. Rinderknecht, et al.
Publicado: (2021) -
Natural language word embeddings as a glimpse into healthcare language and associated mortality surrounding end of life
por: Wei Gao, et al.
Publicado: (2021) -
Scalable and accurate deep learning with electronic health records
por: Alvin Rajkomar, et al.
Publicado: (2018) -
Fine-Tuning Word Embeddings for Hierarchical Representation of Data Using a Corpus and a Knowledge Base for Various Machine Learning Applications
por: Mohammed Alsuhaibani, et al.
Publicado: (2021) -
Blockchain vehicles for efficient Medical Record management
por: Anuraag A. Vazirani, et al.
Publicado: (2020)