Data-driven modeling to assess receptivity for Rift Valley Fever virus.
Rift Valley Fever virus (RVFV) is an enzootic virus that causes extensive morbidity and mortality in domestic ruminants in Africa, and it has shown the potential to invade other areas such as the Arabian Peninsula. Here, we develop methods for linking mathematical models to real-world data that coul...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/14de4460e16d496f841750b17accaad4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:14de4460e16d496f841750b17accaad4 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:14de4460e16d496f841750b17accaad42021-11-18T09:16:41ZData-driven modeling to assess receptivity for Rift Valley Fever virus.1935-27271935-273510.1371/journal.pntd.0002515https://doaj.org/article/14de4460e16d496f841750b17accaad42013-11-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/24244769/?tool=EBIhttps://doaj.org/toc/1935-2727https://doaj.org/toc/1935-2735Rift Valley Fever virus (RVFV) is an enzootic virus that causes extensive morbidity and mortality in domestic ruminants in Africa, and it has shown the potential to invade other areas such as the Arabian Peninsula. Here, we develop methods for linking mathematical models to real-world data that could be used for continent-scale risk assessment given adequate data on local host and vector populations. We have applied the methods to a well-studied agricultural region of California with [Formula: see text]1 million dairy cattle, abundant and competent mosquito vectors, and a permissive climate that has enabled consistent transmission of West Nile virus and historically other arboviruses. Our results suggest that RVFV outbreaks could occur from February-November, but would progress slowly during winter-early spring or early fall and be limited spatially to areas with early increases in vector abundance. Risk was greatest in summer, when the areas at risk broadened to include most of the dairy farms in the study region, indicating the potential for considerable economic losses if an introduction were to occur. To assess the threat that RVFV poses to North America, including what-if scenarios for introduction and control strategies, models such as this one should be an integral part of the process; however, modeling must be paralleled by efforts to address the numerous remaining gaps in data and knowledge for this system.Christopher M BarkerTianchan NiuWilliam K ReisenDavid M HartleyPublic Library of Science (PLoS)articleArctic medicine. Tropical medicineRC955-962Public aspects of medicineRA1-1270ENPLoS Neglected Tropical Diseases, Vol 7, Iss 11, p e2515 (2013) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Arctic medicine. Tropical medicine RC955-962 Public aspects of medicine RA1-1270 |
spellingShingle |
Arctic medicine. Tropical medicine RC955-962 Public aspects of medicine RA1-1270 Christopher M Barker Tianchan Niu William K Reisen David M Hartley Data-driven modeling to assess receptivity for Rift Valley Fever virus. |
description |
Rift Valley Fever virus (RVFV) is an enzootic virus that causes extensive morbidity and mortality in domestic ruminants in Africa, and it has shown the potential to invade other areas such as the Arabian Peninsula. Here, we develop methods for linking mathematical models to real-world data that could be used for continent-scale risk assessment given adequate data on local host and vector populations. We have applied the methods to a well-studied agricultural region of California with [Formula: see text]1 million dairy cattle, abundant and competent mosquito vectors, and a permissive climate that has enabled consistent transmission of West Nile virus and historically other arboviruses. Our results suggest that RVFV outbreaks could occur from February-November, but would progress slowly during winter-early spring or early fall and be limited spatially to areas with early increases in vector abundance. Risk was greatest in summer, when the areas at risk broadened to include most of the dairy farms in the study region, indicating the potential for considerable economic losses if an introduction were to occur. To assess the threat that RVFV poses to North America, including what-if scenarios for introduction and control strategies, models such as this one should be an integral part of the process; however, modeling must be paralleled by efforts to address the numerous remaining gaps in data and knowledge for this system. |
format |
article |
author |
Christopher M Barker Tianchan Niu William K Reisen David M Hartley |
author_facet |
Christopher M Barker Tianchan Niu William K Reisen David M Hartley |
author_sort |
Christopher M Barker |
title |
Data-driven modeling to assess receptivity for Rift Valley Fever virus. |
title_short |
Data-driven modeling to assess receptivity for Rift Valley Fever virus. |
title_full |
Data-driven modeling to assess receptivity for Rift Valley Fever virus. |
title_fullStr |
Data-driven modeling to assess receptivity for Rift Valley Fever virus. |
title_full_unstemmed |
Data-driven modeling to assess receptivity for Rift Valley Fever virus. |
title_sort |
data-driven modeling to assess receptivity for rift valley fever virus. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2013 |
url |
https://doaj.org/article/14de4460e16d496f841750b17accaad4 |
work_keys_str_mv |
AT christophermbarker datadrivenmodelingtoassessreceptivityforriftvalleyfevervirus AT tianchanniu datadrivenmodelingtoassessreceptivityforriftvalleyfevervirus AT williamkreisen datadrivenmodelingtoassessreceptivityforriftvalleyfevervirus AT davidmhartley datadrivenmodelingtoassessreceptivityforriftvalleyfevervirus |
_version_ |
1718420886845915136 |