A Multichannel Deep Learning Framework for Cyberbullying Detection on Social Media
Online social networks (OSNs) play an integral role in facilitating social interaction; however, these social networks increase antisocial behavior, such as cyberbullying, hate speech, and trolling. Aggression or hate speech that takes place through short message service (SMS) or the Internet (e.g.,...
Guardado en:
Autores principales: | Munif Alotaibi, Bandar Alotaibi, Abdul Razaque |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/14deff3c56fc4acca350c4921838b59d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Cyberbullying Detection: Hybrid Models Based on Machine Learning and Natural Language Processing Techniques
por: Chahat Raj, et al.
Publicado: (2021) -
Influence of COVID-19 Epidemic on Dark Web Contents
por: Abdul Razaque, et al.
Publicado: (2021) -
Privacy Preservation Models for Third-Party Auditor over Cloud Computing: A Survey
por: Abdul Razaque, et al.
Publicado: (2021) -
Feature-Based Interpretation of the Deep Neural Network
por: Eun-Hun Lee, et al.
Publicado: (2021) -
Comparison of Deep Neural Network Models and Effectiveness of EMG Signal Feature Value for Estimating Dorsiflexion
por: Muhammad Akmal Bin Mohammed Zaffir, et al.
Publicado: (2021)