Supervised training of spiking neural networks for robust deployment on mixed-signal neuromorphic processors
Abstract Mixed-signal analog/digital circuits emulate spiking neurons and synapses with extremely high energy efficiency, an approach known as “neuromorphic engineering”. However, analog circuits are sensitive to process-induced variation among transistors in a chip (“device mismatch”). For neuromor...
Guardado en:
Autores principales: | Julian Büchel, Dmitrii Zendrikov, Sergio Solinas, Giacomo Indiveri, Dylan R. Muir |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/14e9f78b35774441b084b0d57ac11b34 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Robust neuromorphic coupled oscillators for adaptive pacemakers
por: Renate Krause, et al.
Publicado: (2021) -
A robust model of Stimulus-Specific Adaptation validated on neuromorphic hardware
por: Natacha Vanattou-Saïfoudine, et al.
Publicado: (2021) -
Supervised learning in spiking neural networks with FORCE training
por: Wilten Nicola, et al.
Publicado: (2017) -
Control of criticality and computation in spiking neuromorphic networks with plasticity
por: Benjamin Cramer, et al.
Publicado: (2020) -
SSTDP: Supervised Spike Timing Dependent Plasticity for Efficient Spiking Neural Network Training
por: Fangxin Liu, et al.
Publicado: (2021)