Machine learning for patient risk stratification: standing on, or looking over, the shoulders of clinicians?
Abstract Machine learning can help clinicians to make individualized patient predictions only if researchers demonstrate models that contribute novel insights, rather than learning the most likely next step in a set of actions a clinician will take. We trained deep learning models using only clinici...
Guardado en:
Autores principales: | Brett K. Beaulieu-Jones, William Yuan, Gabriel A. Brat, Andrew L. Beam, Griffin Weber, Marshall Ruffin, Isaac S. Kohane |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/151095ca45c745cbaf37ac11a1ed124a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Real-time clinician text feeds from electronic health records
por: James T. H. Teo, et al.
Publicado: (2021) -
Deep representation learning of electronic health records to unlock patient stratification at scale
por: Isotta Landi, et al.
Publicado: (2020) -
Evaluating risk stratification scoring systems to predict mortality in patients with COVID-19
por: Naveen Garg, et al.
Publicado: (2021) -
Training for our digital future: a human-centered design approach to graduate medical education for aspiring clinician-innovators
por: Jocelyn Carter, et al.
Publicado: (2018) -
Quantitative disease risk scores from EHR with applications to clinical risk stratification and genetic studies
por: Danqing Xu, et al.
Publicado: (2021)