KPIs-Based Clustering and Visualization of HPC Jobs: A Feature Reduction Approach
High-Performance Computing (HPC) systems need to be constantly monitored to ensure their stability. The monitoring systems collect a tremendous amount of data about different parameters or Key Performance Indicators (KPIs), such as resource usage, IO waiting time, etc. A proper analysis of this data...
Guardado en:
Autores principales: | Mohamed Soliman Halawa, Rebeca P. Diaz Redondo, Ana Fernandez Vilas |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/15158ac5b42c43208be23fbca09f6197 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Multivariate Extreme Learning Machine Based AutoEncoder for Electricity Consumption Series Clustering
por: Kaihong Zheng, et al.
Publicado: (2021) -
Fast Sequential Clustering in Riemannian Manifolds for Dynamic and Time-Series-Annotated Multilayer Networks
por: Cong Ye, et al.
Publicado: (2021) -
Machine Learning for the Relationship of High-Energy Electron Flux between GEO and MEO with Application to Missing Values Imputation for Beidou MEO Data
por: Cui Ruifei, et al.
Publicado: (2021) -
A Hybrid Approach for Clustering Uncertain Time Series
por: Ruizhe Ma, et al.
Publicado: (2020) -
FOCT: Fast Overlapping Clustering for Textual Data
por: Atefeh Khazaei, et al.
Publicado: (2021)