Effects of Environmental Factors on the Leaching and Immobilization Behavior of Arsenic from Mudstone by Laboratory and In Situ Column Experiments

Hydrothermally altered rocks generated from underground/tunnel projects often produce acidic leachate and release heavy metals and toxic metalloids, such as arsenic (As). The adsorption layer and immobilization methods using natural adsorbents or immobilizer as reasonable countermeasures have been p...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Takahiko Arima, Ryosuke Sasaki, Takahiro Yamamoto, Carlito Baltazar Tabelin, Shuichi Tamoto, Toshifumi Igarashi
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/15371d7f2f4e4d4da61c690b80b108d4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Hydrothermally altered rocks generated from underground/tunnel projects often produce acidic leachate and release heavy metals and toxic metalloids, such as arsenic (As). The adsorption layer and immobilization methods using natural adsorbents or immobilizer as reasonable countermeasures have been proposed. In this study, two sets of column experiments were conducted, of which one was focused on the laboratory columns and other on the in situ columns, to evaluate the effects of column conditions on leaching of As from excavated rocks and on adsorption or immobilization behavior of As by a river sediment (RS) as a natural adsorbent or immobilizer. A bottom adsorption layer consisting of the RS was constructed under the excavated rock layer or a mixing layer of the excavated rock and river sediment was packed in the column. The results showed that no significant trends in the adsorption and immobilization of As by the RS were observed by comparing laboratory and in situ column experiments because the experimental conditions did not influence significant change in the leachate pH which affects As adsorption or immobilization. However, As leaching concentrations of the in situ experiments were higher than those of the laboratory column experiments. In addition, the lower pH, higher Eh and higher coexisting sulfate ions of the leachate were observed for the in situ columns, compared to the results of the laboratory columns. These results indicate that the leaching concentration of As became higher in the in situ columns, resulting in higher oxidation of sulfide minerals in the rock. This may be due to the differences in conditions, such as temperature and water content, which induce the differences in the rate of oxidation of minerals contained in the rock. On the other hand, since the leachate pH affecting As adsorption or immobilization was not influenced significantly, As adsorption or immobilization effect by the RS were effective for both laboratory and in situ column experiments. These results indicate that both in situ and laboratory column experiments are useful in evaluating leaching and adsorption of As by natural adsorbents, despite the fact that the water content which directly affects the rate of oxidation is sensitive to weathering conditions.