Prediction of municipality-level winter wheat yield based on meteorological data using machine learning in Hokkaido, Japan.

This study analyzed meteorological constraints on winter wheat yield in the northern Japanese island, Hokkaido, and developed a machine learning model to predict municipality-level yields from meteorological data. Compared to most wheat producing areas, this island is characterized by wet climate ow...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Keach Murakami, Seiji Shimoda, Yasuhiro Kominami, Manabu Nemoto, Satoshi Inoue
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/153cb3ff3c33401ab65957d9f4b67f8e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:153cb3ff3c33401ab65957d9f4b67f8e
record_format dspace
spelling oai:doaj.org-article:153cb3ff3c33401ab65957d9f4b67f8e2021-12-02T20:16:49ZPrediction of municipality-level winter wheat yield based on meteorological data using machine learning in Hokkaido, Japan.1932-620310.1371/journal.pone.0258677https://doaj.org/article/153cb3ff3c33401ab65957d9f4b67f8e2021-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0258677https://doaj.org/toc/1932-6203This study analyzed meteorological constraints on winter wheat yield in the northern Japanese island, Hokkaido, and developed a machine learning model to predict municipality-level yields from meteorological data. Compared to most wheat producing areas, this island is characterized by wet climate owing to greater annual precipitation and abundant snowmelt water supply in spring. Based on yield statistics collected from 119 municipalities for 14 years (N = 1,516) and high-resolution surface meteorological data, correlation analyses showed that precipitation, daily minimum air temperature, and irradiance during the grain-filling period had significant effects on the yield throughout the island while the effect of snow depth in early winter and spring was dependent on sites. Using 10-d mean meteorological data within a certain period between seeding and harvest as predictor variables and one-year-leave-out cross-validation procedure, performance of machine learning models based on neural network (NN), random forest (RF), support vector machine regression (SVR), partial least squares regression (PLS), and cubist regression (CB) were compared to a multiple linear regression model (MLR) and a null model that returns an average yield of the municipality. The root mean square errors of PLS, SVR, and RF were 872, 982, and 1,024 kg ha-1 and were smaller than those of MLR (1,068 kg ha-1) and null model (1,035 kg ha-1). These models outperformed the controls in other metrics including Pearson's correlation coefficient and Nash-Sutcliffe efficiency. Variable importance analysis on PLS indicated that minimum air temperature and precipitation during the grain-filling period had major roles in the prediction and excluding predictors in this period (i.e. yield forecast with a longer lead-time) decreased forecast performance of the models. These results were consistent with our understanding of meteorological impacts on wheat yield, suggesting usefulness of explainable machine learning in meteorological crop yield prediction under wet climate.Keach MurakamiSeiji ShimodaYasuhiro KominamiManabu NemotoSatoshi InouePublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 10, p e0258677 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Keach Murakami
Seiji Shimoda
Yasuhiro Kominami
Manabu Nemoto
Satoshi Inoue
Prediction of municipality-level winter wheat yield based on meteorological data using machine learning in Hokkaido, Japan.
description This study analyzed meteorological constraints on winter wheat yield in the northern Japanese island, Hokkaido, and developed a machine learning model to predict municipality-level yields from meteorological data. Compared to most wheat producing areas, this island is characterized by wet climate owing to greater annual precipitation and abundant snowmelt water supply in spring. Based on yield statistics collected from 119 municipalities for 14 years (N = 1,516) and high-resolution surface meteorological data, correlation analyses showed that precipitation, daily minimum air temperature, and irradiance during the grain-filling period had significant effects on the yield throughout the island while the effect of snow depth in early winter and spring was dependent on sites. Using 10-d mean meteorological data within a certain period between seeding and harvest as predictor variables and one-year-leave-out cross-validation procedure, performance of machine learning models based on neural network (NN), random forest (RF), support vector machine regression (SVR), partial least squares regression (PLS), and cubist regression (CB) were compared to a multiple linear regression model (MLR) and a null model that returns an average yield of the municipality. The root mean square errors of PLS, SVR, and RF were 872, 982, and 1,024 kg ha-1 and were smaller than those of MLR (1,068 kg ha-1) and null model (1,035 kg ha-1). These models outperformed the controls in other metrics including Pearson's correlation coefficient and Nash-Sutcliffe efficiency. Variable importance analysis on PLS indicated that minimum air temperature and precipitation during the grain-filling period had major roles in the prediction and excluding predictors in this period (i.e. yield forecast with a longer lead-time) decreased forecast performance of the models. These results were consistent with our understanding of meteorological impacts on wheat yield, suggesting usefulness of explainable machine learning in meteorological crop yield prediction under wet climate.
format article
author Keach Murakami
Seiji Shimoda
Yasuhiro Kominami
Manabu Nemoto
Satoshi Inoue
author_facet Keach Murakami
Seiji Shimoda
Yasuhiro Kominami
Manabu Nemoto
Satoshi Inoue
author_sort Keach Murakami
title Prediction of municipality-level winter wheat yield based on meteorological data using machine learning in Hokkaido, Japan.
title_short Prediction of municipality-level winter wheat yield based on meteorological data using machine learning in Hokkaido, Japan.
title_full Prediction of municipality-level winter wheat yield based on meteorological data using machine learning in Hokkaido, Japan.
title_fullStr Prediction of municipality-level winter wheat yield based on meteorological data using machine learning in Hokkaido, Japan.
title_full_unstemmed Prediction of municipality-level winter wheat yield based on meteorological data using machine learning in Hokkaido, Japan.
title_sort prediction of municipality-level winter wheat yield based on meteorological data using machine learning in hokkaido, japan.
publisher Public Library of Science (PLoS)
publishDate 2021
url https://doaj.org/article/153cb3ff3c33401ab65957d9f4b67f8e
work_keys_str_mv AT keachmurakami predictionofmunicipalitylevelwinterwheatyieldbasedonmeteorologicaldatausingmachinelearninginhokkaidojapan
AT seijishimoda predictionofmunicipalitylevelwinterwheatyieldbasedonmeteorologicaldatausingmachinelearninginhokkaidojapan
AT yasuhirokominami predictionofmunicipalitylevelwinterwheatyieldbasedonmeteorologicaldatausingmachinelearninginhokkaidojapan
AT manabunemoto predictionofmunicipalitylevelwinterwheatyieldbasedonmeteorologicaldatausingmachinelearninginhokkaidojapan
AT satoshiinoue predictionofmunicipalitylevelwinterwheatyieldbasedonmeteorologicaldatausingmachinelearninginhokkaidojapan
_version_ 1718374451491373056