Machine learning autonomous identification of magnetic alloys beyond the Slater-Pauling limit

Finding materials with large magnetization is highly desirable for technological applications. Here, a machine learning autonomous search and automated combinatorial synthesis reveal that multi-element alloys with Ir and Pt impurities have a magnetization exceeding the Slater-Pauling limit of Fe75Co...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yuma Iwasaki, Ryohto Sawada, Eiji Saitoh, Masahiko Ishida
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/157c58c7e40c43eb891e7c9a61f5ce7b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:157c58c7e40c43eb891e7c9a61f5ce7b
record_format dspace
spelling oai:doaj.org-article:157c58c7e40c43eb891e7c9a61f5ce7b2021-12-02T17:04:52ZMachine learning autonomous identification of magnetic alloys beyond the Slater-Pauling limit10.1038/s43246-021-00135-02662-4443https://doaj.org/article/157c58c7e40c43eb891e7c9a61f5ce7b2021-03-01T00:00:00Zhttps://doi.org/10.1038/s43246-021-00135-0https://doaj.org/toc/2662-4443Finding materials with large magnetization is highly desirable for technological applications. Here, a machine learning autonomous search and automated combinatorial synthesis reveal that multi-element alloys with Ir and Pt impurities have a magnetization exceeding the Slater-Pauling limit of Fe75Co25.Yuma IwasakiRyohto SawadaEiji SaitohMasahiko IshidaNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492ENCommunications Materials, Vol 2, Iss 1, Pp 1-7 (2021)
institution DOAJ
collection DOAJ
language EN
topic Materials of engineering and construction. Mechanics of materials
TA401-492
spellingShingle Materials of engineering and construction. Mechanics of materials
TA401-492
Yuma Iwasaki
Ryohto Sawada
Eiji Saitoh
Masahiko Ishida
Machine learning autonomous identification of magnetic alloys beyond the Slater-Pauling limit
description Finding materials with large magnetization is highly desirable for technological applications. Here, a machine learning autonomous search and automated combinatorial synthesis reveal that multi-element alloys with Ir and Pt impurities have a magnetization exceeding the Slater-Pauling limit of Fe75Co25.
format article
author Yuma Iwasaki
Ryohto Sawada
Eiji Saitoh
Masahiko Ishida
author_facet Yuma Iwasaki
Ryohto Sawada
Eiji Saitoh
Masahiko Ishida
author_sort Yuma Iwasaki
title Machine learning autonomous identification of magnetic alloys beyond the Slater-Pauling limit
title_short Machine learning autonomous identification of magnetic alloys beyond the Slater-Pauling limit
title_full Machine learning autonomous identification of magnetic alloys beyond the Slater-Pauling limit
title_fullStr Machine learning autonomous identification of magnetic alloys beyond the Slater-Pauling limit
title_full_unstemmed Machine learning autonomous identification of magnetic alloys beyond the Slater-Pauling limit
title_sort machine learning autonomous identification of magnetic alloys beyond the slater-pauling limit
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/157c58c7e40c43eb891e7c9a61f5ce7b
work_keys_str_mv AT yumaiwasaki machinelearningautonomousidentificationofmagneticalloysbeyondtheslaterpaulinglimit
AT ryohtosawada machinelearningautonomousidentificationofmagneticalloysbeyondtheslaterpaulinglimit
AT eijisaitoh machinelearningautonomousidentificationofmagneticalloysbeyondtheslaterpaulinglimit
AT masahikoishida machinelearningautonomousidentificationofmagneticalloysbeyondtheslaterpaulinglimit
_version_ 1718381834209853440