Machine learning autonomous identification of magnetic alloys beyond the Slater-Pauling limit
Finding materials with large magnetization is highly desirable for technological applications. Here, a machine learning autonomous search and automated combinatorial synthesis reveal that multi-element alloys with Ir and Pt impurities have a magnetization exceeding the Slater-Pauling limit of Fe75Co...
Enregistré dans:
Auteurs principaux: | Yuma Iwasaki, Ryohto Sawada, Eiji Saitoh, Masahiko Ishida |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/157c58c7e40c43eb891e7c9a61f5ce7b |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
High temperature oxidation of corrosion resistant alloys from machine learning
par: Christopher D. Taylor, et autres
Publié: (2021) -
From Slater to Mott physics by epitaxially engineering electronic correlations in oxide interfaces
par: Carla Lupo, et autres
Publié: (2021) -
Machine-learned interatomic potentials for alloys and alloy phase diagrams
par: Conrad W. Rosenbrock, et autres
Publié: (2021) -
Corrosion of high entropy alloys
par: Yao Qiu, et autres
Publié: (2017) -
A perspective on corrosion of multi-principal element alloys
par: N. Birbilis, et autres
Publié: (2021)