Machine learning autonomous identification of magnetic alloys beyond the Slater-Pauling limit
Finding materials with large magnetization is highly desirable for technological applications. Here, a machine learning autonomous search and automated combinatorial synthesis reveal that multi-element alloys with Ir and Pt impurities have a magnetization exceeding the Slater-Pauling limit of Fe75Co...
Guardado en:
Autores principales: | Yuma Iwasaki, Ryohto Sawada, Eiji Saitoh, Masahiko Ishida |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/157c58c7e40c43eb891e7c9a61f5ce7b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
High temperature oxidation of corrosion resistant alloys from machine learning
por: Christopher D. Taylor, et al.
Publicado: (2021) -
From Slater to Mott physics by epitaxially engineering electronic correlations in oxide interfaces
por: Carla Lupo, et al.
Publicado: (2021) -
Machine-learned interatomic potentials for alloys and alloy phase diagrams
por: Conrad W. Rosenbrock, et al.
Publicado: (2021) -
Corrosion of high entropy alloys
por: Yao Qiu, et al.
Publicado: (2017) -
A perspective on corrosion of multi-principal element alloys
por: N. Birbilis, et al.
Publicado: (2021)