A study of real-world micrograph data quality and machine learning model robustness

Abstract Machine-learning (ML) techniques hold the potential of enabling efficient quantitative micrograph analysis, but the robustness of ML models with respect to real-world micrograph quality variations has not been carefully evaluated. We collected thousands of scanning electron microscopy (SEM)...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Xiaoting Zhong, Brian Gallagher, Keenan Eves, Emily Robertson, T. Nathan Mundhenk, T. Yong-Jin Han
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/15813301f7d54bfcb75f7018545b366d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares