A study of real-world micrograph data quality and machine learning model robustness
Abstract Machine-learning (ML) techniques hold the potential of enabling efficient quantitative micrograph analysis, but the robustness of ML models with respect to real-world micrograph quality variations has not been carefully evaluated. We collected thousands of scanning electron microscopy (SEM)...
Guardado en:
Autores principales: | Xiaoting Zhong, Brian Gallagher, Keenan Eves, Emily Robertson, T. Nathan Mundhenk, T. Yong-Jin Han |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/15813301f7d54bfcb75f7018545b366d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Machine learning for perovskite materials design and discovery
por: Qiuling Tao, et al.
Publicado: (2021) -
Learning surface molecular structures via machine vision
por: Maxim Ziatdinov, et al.
Publicado: (2017) -
Two-step machine learning enables optimized nanoparticle synthesis
por: Flore Mekki-Berrada, et al.
Publicado: (2021) -
Machine-learned interatomic potentials for alloys and alloy phase diagrams
por: Conrad W. Rosenbrock, et al.
Publicado: (2021) -
Decoding defect statistics from diffractograms via machine learning
por: Cody Kunka, et al.
Publicado: (2021)