Chaos-generalized regression neural network prediction model of mine water inflow
Abstract Artificial neural network (ANN) provides a new way for mine water inflow prediction. However, the effectiveness of prediction using ANN model would not be guaranteed if the influencing factors of water inflow are difficult to quantify or there are only a few observation data. Chaos theory c...
Guardado en:
Autores principales: | Jianlin Li, Luyang Wang, Xinyi Wang, Peiqiang Gao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Springer
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/159fec4a91714459b984b558553fd412 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Taming the Chaos in Neural Network Time Series Predictions
por: Sebastian Raubitzek, et al.
Publicado: (2021) -
Long-term energy demand in Malaysia as a function of energy supply: A comparative analysis of Non-Linear Autoregressive Exogenous Neural Networks and Multiple Non-Linear Regression Models
por: Bamidele Victor Ayodele, et al.
Publicado: (2021) -
Complexity Collapse, Fluctuating Synchrony, and Transient Chaos in Neural Networks With Delay Clusters
por: S. Kamyar Tavakoli, et al.
Publicado: (2021) -
Genomewide Dam Methylation in <named-content content-type="genus-species">Escherichia coli</named-content> during Long-Term Stationary Phase
por: Lacey L. Westphal, et al.
Publicado: (2016) -
"Chaos rules" revisited
por: David Murphy
Publicado: (2011)