Geometric and topological approaches to shape variation in <italic toggle="yes">Ginkgo</italic> leaves
Leaf shape is a key plant trait that varies enormously. The range of applications for data on this trait requires frequent methodological development so that researchers have an up-to-date toolkit with which to quantify leaf shape. We generated a dataset of 468 leaves produced by Ginkgo biloba, and...
Enregistré dans:
Auteurs principaux: | Haibin Hang, Martin Bauer, Washington Mio, Luke Mander |
---|---|
Format: | article |
Langue: | EN |
Publié: |
The Royal Society
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/15c1b8a265624a89b87f8e23e1cd9cd7 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
TopoResNet: A Hybrid Deep Learning Architecture and Its Application to Skin Lesion Classification
par: Chuan-Shen Hu, et autres
Publié: (2021) -
Carapace shape of some aeglid crabs: plasticity at different levels
par: Metri,Rafael, et autres
Publié: (2016) -
A Topological Data Analysis approach for retrieving Local Climate Zones patterns in satellite data
par: Caio Átila Pereira Sena, et autres
Publié: (2021) -
Morphological Variation in the Seahorse Vertebral System
par: Bruner,Emilano, et autres
Publié: (2008) -
The 3D skull 0–4 years: A validated, generative, statistical shape model
par: Eimear O' Sullivan, et autres
Publié: (2021)