Rapid adaptation to microgravity in mammalian macrophage cells

Abstract Despite the observed severe effects of microgravity on mammalian cells, many astronauts have completed long term stays in space without suffering from severe health problems. This raises questions about the cellular capacity for adaptation to a new gravitational environment. The Internation...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cora S. Thiel, Diane de Zélicourt, Svantje Tauber, Astrid Adrian, Markus Franz, Dana M. Simmet, Kathrin Schoppmann, Swantje Hauschild, Sonja Krammer, Miriam Christen, Gesine Bradacs, Katrin Paulsen, Susanne A. Wolf, Markus Braun, Jason Hatton, Vartan Kurtcuoglu, Stefanie Franke, Samuel Tanner, Samantha Cristoforetti, Beate Sick, Bertold Hock, Oliver Ullrich
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/15cba96c636e43309fa596cd593879c6
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:15cba96c636e43309fa596cd593879c6
record_format dspace
spelling oai:doaj.org-article:15cba96c636e43309fa596cd593879c62021-12-02T11:53:03ZRapid adaptation to microgravity in mammalian macrophage cells10.1038/s41598-017-00119-62045-2322https://doaj.org/article/15cba96c636e43309fa596cd593879c62017-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-00119-6https://doaj.org/toc/2045-2322Abstract Despite the observed severe effects of microgravity on mammalian cells, many astronauts have completed long term stays in space without suffering from severe health problems. This raises questions about the cellular capacity for adaptation to a new gravitational environment. The International Space Station (ISS) experiment TRIPLE LUX A, performed in the BIOLAB laboratory of the ISS COLUMBUS module, allowed for the first time the direct measurement of a cellular function in real time and on orbit. We measured the oxidative burst reaction in mammalian macrophages (NR8383 rat alveolar macrophages) exposed to a centrifuge regime of internal 0 g and 1 g controls and step-wise increase or decrease of the gravitational force in four independent experiments. Surprisingly, we found that these macrophages adapted to microgravity in an ultra-fast manner within seconds, after an immediate inhibitory effect on the oxidative burst reaction. For the first time, we provided direct evidence of cellular sensitivity to gravity, through real-time on orbit measurements and by using an experimental system, in which all factors except gravity were constant. The surprisingly ultra-fast adaptation to microgravity indicates that mammalian macrophages are equipped with a highly efficient adaptation potential to a low gravity environment. This opens new avenues for the exploration of adaptation of mammalian cells to gravitational changes.Cora S. ThielDiane de ZélicourtSvantje TauberAstrid AdrianMarkus FranzDana M. SimmetKathrin SchoppmannSwantje HauschildSonja KrammerMiriam ChristenGesine BradacsKatrin PaulsenSusanne A. WolfMarkus BraunJason HattonVartan KurtcuogluStefanie FrankeSamuel TannerSamantha CristoforettiBeate SickBertold HockOliver UllrichNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-13 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Cora S. Thiel
Diane de Zélicourt
Svantje Tauber
Astrid Adrian
Markus Franz
Dana M. Simmet
Kathrin Schoppmann
Swantje Hauschild
Sonja Krammer
Miriam Christen
Gesine Bradacs
Katrin Paulsen
Susanne A. Wolf
Markus Braun
Jason Hatton
Vartan Kurtcuoglu
Stefanie Franke
Samuel Tanner
Samantha Cristoforetti
Beate Sick
Bertold Hock
Oliver Ullrich
Rapid adaptation to microgravity in mammalian macrophage cells
description Abstract Despite the observed severe effects of microgravity on mammalian cells, many astronauts have completed long term stays in space without suffering from severe health problems. This raises questions about the cellular capacity for adaptation to a new gravitational environment. The International Space Station (ISS) experiment TRIPLE LUX A, performed in the BIOLAB laboratory of the ISS COLUMBUS module, allowed for the first time the direct measurement of a cellular function in real time and on orbit. We measured the oxidative burst reaction in mammalian macrophages (NR8383 rat alveolar macrophages) exposed to a centrifuge regime of internal 0 g and 1 g controls and step-wise increase or decrease of the gravitational force in four independent experiments. Surprisingly, we found that these macrophages adapted to microgravity in an ultra-fast manner within seconds, after an immediate inhibitory effect on the oxidative burst reaction. For the first time, we provided direct evidence of cellular sensitivity to gravity, through real-time on orbit measurements and by using an experimental system, in which all factors except gravity were constant. The surprisingly ultra-fast adaptation to microgravity indicates that mammalian macrophages are equipped with a highly efficient adaptation potential to a low gravity environment. This opens new avenues for the exploration of adaptation of mammalian cells to gravitational changes.
format article
author Cora S. Thiel
Diane de Zélicourt
Svantje Tauber
Astrid Adrian
Markus Franz
Dana M. Simmet
Kathrin Schoppmann
Swantje Hauschild
Sonja Krammer
Miriam Christen
Gesine Bradacs
Katrin Paulsen
Susanne A. Wolf
Markus Braun
Jason Hatton
Vartan Kurtcuoglu
Stefanie Franke
Samuel Tanner
Samantha Cristoforetti
Beate Sick
Bertold Hock
Oliver Ullrich
author_facet Cora S. Thiel
Diane de Zélicourt
Svantje Tauber
Astrid Adrian
Markus Franz
Dana M. Simmet
Kathrin Schoppmann
Swantje Hauschild
Sonja Krammer
Miriam Christen
Gesine Bradacs
Katrin Paulsen
Susanne A. Wolf
Markus Braun
Jason Hatton
Vartan Kurtcuoglu
Stefanie Franke
Samuel Tanner
Samantha Cristoforetti
Beate Sick
Bertold Hock
Oliver Ullrich
author_sort Cora S. Thiel
title Rapid adaptation to microgravity in mammalian macrophage cells
title_short Rapid adaptation to microgravity in mammalian macrophage cells
title_full Rapid adaptation to microgravity in mammalian macrophage cells
title_fullStr Rapid adaptation to microgravity in mammalian macrophage cells
title_full_unstemmed Rapid adaptation to microgravity in mammalian macrophage cells
title_sort rapid adaptation to microgravity in mammalian macrophage cells
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/15cba96c636e43309fa596cd593879c6
work_keys_str_mv AT corasthiel rapidadaptationtomicrogravityinmammalianmacrophagecells
AT dianedezelicourt rapidadaptationtomicrogravityinmammalianmacrophagecells
AT svantjetauber rapidadaptationtomicrogravityinmammalianmacrophagecells
AT astridadrian rapidadaptationtomicrogravityinmammalianmacrophagecells
AT markusfranz rapidadaptationtomicrogravityinmammalianmacrophagecells
AT danamsimmet rapidadaptationtomicrogravityinmammalianmacrophagecells
AT kathrinschoppmann rapidadaptationtomicrogravityinmammalianmacrophagecells
AT swantjehauschild rapidadaptationtomicrogravityinmammalianmacrophagecells
AT sonjakrammer rapidadaptationtomicrogravityinmammalianmacrophagecells
AT miriamchristen rapidadaptationtomicrogravityinmammalianmacrophagecells
AT gesinebradacs rapidadaptationtomicrogravityinmammalianmacrophagecells
AT katrinpaulsen rapidadaptationtomicrogravityinmammalianmacrophagecells
AT susanneawolf rapidadaptationtomicrogravityinmammalianmacrophagecells
AT markusbraun rapidadaptationtomicrogravityinmammalianmacrophagecells
AT jasonhatton rapidadaptationtomicrogravityinmammalianmacrophagecells
AT vartankurtcuoglu rapidadaptationtomicrogravityinmammalianmacrophagecells
AT stefaniefranke rapidadaptationtomicrogravityinmammalianmacrophagecells
AT samueltanner rapidadaptationtomicrogravityinmammalianmacrophagecells
AT samanthacristoforetti rapidadaptationtomicrogravityinmammalianmacrophagecells
AT beatesick rapidadaptationtomicrogravityinmammalianmacrophagecells
AT bertoldhock rapidadaptationtomicrogravityinmammalianmacrophagecells
AT oliverullrich rapidadaptationtomicrogravityinmammalianmacrophagecells
_version_ 1718394851469295616