Multiple Damage Detection of an Offshore Helideck through the Two-Step Artificial Neural Network Based on the Limited Mode Shape Data
A helideck is an essential structure in an offshore platform, and it is crucial to maintain its structural integrity and detect the occurrence of damage early. Because helidecks usually consist of complex lattice truss members, precise measurements are required for structural health monitoring based...
Enregistré dans:
Auteurs principaux: | Byungmo Kim, Chanyeong Kim, Seung-Hyun Ha |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/15e304b9681a4a1b930a9947c1fd2ff8 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Damage Detection in Steel Plates Based on Comparing Analytical Results of the Discrete 2-D Wavelet Transform of Primary and Secondary Modes Shape
par: Mohtasham Khanahmadi, et autres
Publié: (2021) -
A new damage detection method using curvature mode shapes with considering the noise of the data transmission and minor damages
par: Masoud Zabihi Samani, et autres
Publié: (2020) -
Simulation of Pan Evaporation Rate by ANN Artificial Intelligence Model in Damghan Region
par: Sina Shahi, et autres
Publié: (2021) -
An Impedance Sensor for Distinguishing Multi-Contaminants in Hydraulic Oil of Offshore Machinery
par: Haotian Shi, et autres
Publié: (2021) -
Application of artificial neural networks to frost detection in central Chile using the next day minimum air temperature forecast
par: Fuentes,Marcel, et autres
Publié: (2018)