Machine learning in spectral domain

Theoretical aspects of automated learning from data involving deep neural networks have open questions. Here Giambagli et al. show that training the neural networks in the spectral domain of the network coupling matrices can reduce the amount of learning parameters and improve the pre-training proce...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Lorenzo Giambagli, Lorenzo Buffoni, Timoteo Carletti, Walter Nocentini, Duccio Fanelli
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/15ef900bcaf14e289d02281b5f925cbd
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:15ef900bcaf14e289d02281b5f925cbd
record_format dspace
spelling oai:doaj.org-article:15ef900bcaf14e289d02281b5f925cbd2021-12-02T13:34:49ZMachine learning in spectral domain10.1038/s41467-021-21481-02041-1723https://doaj.org/article/15ef900bcaf14e289d02281b5f925cbd2021-02-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-21481-0https://doaj.org/toc/2041-1723Theoretical aspects of automated learning from data involving deep neural networks have open questions. Here Giambagli et al. show that training the neural networks in the spectral domain of the network coupling matrices can reduce the amount of learning parameters and improve the pre-training process.Lorenzo GiambagliLorenzo BuffoniTimoteo CarlettiWalter NocentiniDuccio FanelliNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-9 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Lorenzo Giambagli
Lorenzo Buffoni
Timoteo Carletti
Walter Nocentini
Duccio Fanelli
Machine learning in spectral domain
description Theoretical aspects of automated learning from data involving deep neural networks have open questions. Here Giambagli et al. show that training the neural networks in the spectral domain of the network coupling matrices can reduce the amount of learning parameters and improve the pre-training process.
format article
author Lorenzo Giambagli
Lorenzo Buffoni
Timoteo Carletti
Walter Nocentini
Duccio Fanelli
author_facet Lorenzo Giambagli
Lorenzo Buffoni
Timoteo Carletti
Walter Nocentini
Duccio Fanelli
author_sort Lorenzo Giambagli
title Machine learning in spectral domain
title_short Machine learning in spectral domain
title_full Machine learning in spectral domain
title_fullStr Machine learning in spectral domain
title_full_unstemmed Machine learning in spectral domain
title_sort machine learning in spectral domain
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/15ef900bcaf14e289d02281b5f925cbd
work_keys_str_mv AT lorenzogiambagli machinelearninginspectraldomain
AT lorenzobuffoni machinelearninginspectraldomain
AT timoteocarletti machinelearninginspectraldomain
AT walternocentini machinelearninginspectraldomain
AT ducciofanelli machinelearninginspectraldomain
_version_ 1718392718322827264