Machine learning in spectral domain
Theoretical aspects of automated learning from data involving deep neural networks have open questions. Here Giambagli et al. show that training the neural networks in the spectral domain of the network coupling matrices can reduce the amount of learning parameters and improve the pre-training proce...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/15ef900bcaf14e289d02281b5f925cbd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:15ef900bcaf14e289d02281b5f925cbd |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:15ef900bcaf14e289d02281b5f925cbd2021-12-02T13:34:49ZMachine learning in spectral domain10.1038/s41467-021-21481-02041-1723https://doaj.org/article/15ef900bcaf14e289d02281b5f925cbd2021-02-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-21481-0https://doaj.org/toc/2041-1723Theoretical aspects of automated learning from data involving deep neural networks have open questions. Here Giambagli et al. show that training the neural networks in the spectral domain of the network coupling matrices can reduce the amount of learning parameters and improve the pre-training process.Lorenzo GiambagliLorenzo BuffoniTimoteo CarlettiWalter NocentiniDuccio FanelliNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-9 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Lorenzo Giambagli Lorenzo Buffoni Timoteo Carletti Walter Nocentini Duccio Fanelli Machine learning in spectral domain |
description |
Theoretical aspects of automated learning from data involving deep neural networks have open questions. Here Giambagli et al. show that training the neural networks in the spectral domain of the network coupling matrices can reduce the amount of learning parameters and improve the pre-training process. |
format |
article |
author |
Lorenzo Giambagli Lorenzo Buffoni Timoteo Carletti Walter Nocentini Duccio Fanelli |
author_facet |
Lorenzo Giambagli Lorenzo Buffoni Timoteo Carletti Walter Nocentini Duccio Fanelli |
author_sort |
Lorenzo Giambagli |
title |
Machine learning in spectral domain |
title_short |
Machine learning in spectral domain |
title_full |
Machine learning in spectral domain |
title_fullStr |
Machine learning in spectral domain |
title_full_unstemmed |
Machine learning in spectral domain |
title_sort |
machine learning in spectral domain |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/15ef900bcaf14e289d02281b5f925cbd |
work_keys_str_mv |
AT lorenzogiambagli machinelearninginspectraldomain AT lorenzobuffoni machinelearninginspectraldomain AT timoteocarletti machinelearninginspectraldomain AT walternocentini machinelearninginspectraldomain AT ducciofanelli machinelearninginspectraldomain |
_version_ |
1718392718322827264 |